Skip to content

BUG (Regression): Using a tuple as first column name in empty dataframe creates a non functional dataframe and memory errors #54385

Open
@jenno-verdonck

Description

@jenno-verdonck

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd

df1 = pd.DataFrame()
df1[(0, 0)] = [1, 2, 3]

df2 = pd.DataFrame()
df2['a'] = [1, 2, 3]
df2[(0, 0)] = [4, 5, 6]

print(df2.columns)
print(f'df2=\n{df2}')

print(df1.columns)
print(f'df1=\n{df1}')

Issue Description

A dataframe becomes completely unusable when the first column was assigned using a tuple as key. (example df1)
The tuple gets transformed in 2 different columns while data for only one is given. This cause print statements to return "ValueError: Length of values (1) does not match length of index (2)".

When a dataframe already has an existing column (example df2) the assignment works as expected.

Running the assignment on the df1 dataframe 5 times results in a wide range of memory related errors such as:
malloc(): unaligned tcache chunk detected
IndexError: index 94573497622112 is out of bounds for axis 0 with size 5
corrupted size vs. prev_size
double free or corruption (out)

Expected Behavior

The assignment should behave the same in both examples and use the tuple as single header.

Installed Versions

INSTALLED VERSIONS

commit : 0f43794
python : 3.10.12.final.0
python-bits : 64
OS : Linux
OS-release : 5.19.0-50-generic
Version : #50-Ubuntu SMP PREEMPT_DYNAMIC Mon Jul 10 18:24:29 UTC 2023
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 2.0.3
numpy : 1.25.1
pytz : 2022.7.1
dateutil : 2.8.2
setuptools : 68.0.0
pip : 23.2.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.14.0
pandas_datareader: None
bs4 : 4.12.2
bottleneck : None
brotli :
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.7.2
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.11.1
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : 2.3.1
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugDataFrameDataFrame data structureNested DataData where the values are collections (lists, sets, dicts, objects, etc.).

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions