Skip to content

BUG: loc fails with tz_aware DateTimeIndex  #54409

Open
@0x26res

Description

@0x26res

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd

timestamp = pd.to_datetime("2023-01-01", utc=True)
df = pd.DataFrame(
    {
        "index": pd.Series([pd.NaT, timestamp]),
        "value": pd.Series([0, 1]),
    }
).set_index("index")


assert df.loc[pd.Series([pd.NaT, timestamp, timestamp], dtype=df.index.dtype),][
    "value"
].tolist() == [0, 1, 1]


# The line bellow throws KeyError
# None of [DatetimeIndex(['NaT'], dtype='datetime64[ns]', name='index', freq=None)] are in the [index]
# But you'd expect [0]
assert df.loc[pd.Series([pd.NaT], dtype=df.index.dtype),]["value"].tolist() == [0]

Issue Description

If pd.NaT is in my df index, I should be able to get df.loc[pa.NaT, ].

This works in most cases, for example tz-naive, or if the argument of loc is a mix of NaT and valid values.

But it stops working if the index is tz-aware and the argument to loc is all NaT.

Expected Behavior

df.loc[pd.Series([pd.NaT], dtype=df.index.dtype),]["value"].tolist() should return [0]

Installed Versions

INSTALLED VERSIONS

commit : 0f43794
python : 3.10.11.final.0
python-bits : 64
OS : Darwin
OS-release : 22.6.0
Version : Darwin Kernel Version 22.6.0: Wed Jul 5 22:22:05 PDT 2023; root:xnu-8796.141.3~6/RELEASE_ARM64_T6000
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.UTF-8

pandas : 2.0.3
numpy : 1.24.2
pytz : 2023.3
dateutil : 2.8.2
setuptools : 67.3.1
pip : 23.2.1
Cython : None
pytest : 7.4.0
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.3
html5lib : None
pymysql : None
psycopg2 : 2.9.5
jinja2 : 3.1.2
IPython : 8.14.0
pandas_datareader: 0.9.0
bs4 : 4.12.2
bottleneck : None
brotli : None
fastparquet : None
fsspec : 2023.6.0
gcsfs : None
matplotlib : 3.6.0
numba : None
numexpr : 2.8.4
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 12.0.0
pyreadstat : None
pyxlsb : None
s3fs : 2023.6.0
scipy : 1.10.1
snappy : None
sqlalchemy : 2.0.9
tables : None
tabulate : 0.8.10
xarray : 2022.6.0
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : 2.2.0
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugIndexingRelated to indexing on series/frames, not to indexes themselvesTimezonesTimezone data dtype

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions