Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
df = pd.DataFrame({'A': [2, 3, np.nan], 'B': [5, np.nan, np.nan]}).astype(pd.SparseDtype('float64'))
print(df.dtypes)
df.sum(axis=1, skipna=True, min_count=1)
Issue Description
The pd.DataFrame.sum()
function ignores the min_count parameter for sparse dtype. A row of all missings is summed up to zero rather than missing.
df.sum(axis=1, min_count=1, skipna=True)
0 7.0
1 3.0
2 0.0
dtype: Sparse[float64, nan]
Contrast this to the same operation after a to_dense()
call, where the last element is correctly set to missing.
df.sparse.to_dense().sum(axis=1, min_count=1, skipna=True)
0 7.0
1 3.0
2 NaN
dtype: float64
Expected Behavior
The last element should be np.nan because all elements are np.nan
0 7.0
1 3.0
2 np.nan
dtype: Sparse[float64, nan]
Installed Versions
INSTALLED VERSIONS
commit : ba1cccd
python : 3.11.2.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.22000
machine : AMD64
processor : AMD64 Family 25 Model 33 Stepping 0, AuthenticAMD
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : English_Belgium.1252
pandas : 2.1.0
numpy : 1.25.2
pytz : 2022.7.1
dateutil : 2.8.2
setuptools : 65.5.0
pip : 22.3.1
Cython : 0.29.34
pytest : 7.4.2
hypothesis : None
sphinx : None
blosc : 1.11.1
feather : None
xlsxwriter : None
lxml.etree : 4.9.3
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : None
pandas_datareader : None
bs4 : 4.12.2
bottleneck : None
dataframe-api-compat: None
fastparquet : None
fsspec : 2023.3.0
gcsfs : None
matplotlib : 3.7.2
numba : None
numexpr : 2.8.5
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 13.0.0
pyreadstat : 1.2.3
pyxlsb : None