Skip to content

BUG: hash_array does not produce deterministic integers #55605

Open
@Danferno

Description

@Danferno

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd

df1 = pd.DataFrame(data=['a', 'b', 'c'])
df2 = pd.DataFrame(data=['b', 'a', 'c'])

hash1 = pd.util.hash_pandas_object(df1)
hash2 = pd.util.hash_pandas_object(df2)

print(f'hash1: {hash1} \n hash2: {hash2}')
# hash1: 0    14639053686158035780
# 1     3869563279212530728
# 2      393322362522515241
# dtype: uint64
#       hash2: 0    6989536449337278821
# 1    7554402398462747209
# 2     393322362522515241

hash1_alt = pd.util.hash_pandas_object(df1, categorize=False)
hash2_alt = pd.util.hash_pandas_object(df2, categorize=False)

print(f'hash1: {hash1_alt} \n hash2: {hash2_alt}')

df1_n = pd.DataFrame(data=[1,2,3])
df2_n = pd.DataFrame(data=[2,1,3])

print(f'''hash1: {pd.util.hash_pandas_object(df1_n)}
      hash2: {pd.util.hash_pandas_object(df2_n)}''')

Issue Description

I understand deterministic integer to mean, "the same input leads to the same output". However, simply changing the order of elements within an array already leads to different hashes for the same element. Is the idea instead that the exact same array will lead to the exact same hashes? If so that should be clarified in the documentation.

Expected Behavior

The same hashes appear, just in a different order

df1 = pd.DataFrame(data=['a', 'b', 'c'])
df2 = pd.DataFrame(data=['b', 'a', 'c'])

hash1 = pd.util.hash_pandas_object(df1)
hash2 = pd.util.hash_pandas_object(df2)

print(f'hash1: {hash1} \n hash2: {hash2}')
# hash1: 0    7554402398462747209
# 1     6989536449337278821
# 2      393322362522515241
# dtype: uint64
#       hash2: 0    6989536449337278821
# 1    7554402398462747209
# 2     393322362522515241

Installed Versions

INSTALLED VERSIONS ------------------ commit : e86ed37 python : 3.11.2.final.0 python-bits : 64 OS : Windows OS-release : 10 Version : 10.0.22000 machine : AMD64 processor : AMD64 Family 25 Model 33 Stepping 0, AuthenticAMD byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : English_Belgium.1252

pandas : 2.1.1
numpy : 1.25.2
pytz : 2022.7.1
dateutil : 2.8.2
setuptools : 65.5.0
pip : 22.3.1
Cython : 0.29.34
pytest : 7.4.2
hypothesis : None
sphinx : None
blosc : 1.11.1
feather : None
xlsxwriter : None
lxml.etree : 4.9.3
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : None
pandas_datareader : None
bs4 : 4.12.2
bottleneck : None
dataframe-api-compat: None
fastparquet : None
fsspec : 2023.3.0
gcsfs : None
matplotlib : 3.7.2
numba : None
numexpr : 2.8.5
odfpy : None
openpyxl : 3.0.10
pandas_gbq : None
pyarrow : 13.0.0
pyreadstat : 1.2.3
pyxlsb : None
s3fs : None
scipy : 1.10.1
sqlalchemy : None
tables : None
tabulate : None
xarray : 2023.8.0
xlrd : 2.0.1
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions