Skip to content

BUG: Nullable Float64Dtype incorrectly converting NaN to NA when constructed with Arrow array #55668

Open
@tswast

Description

@tswast

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
import pyarrow as pa


a = pa.array([1.0, float("NaN"), None, float("+inf")])
s = pd.Series(a, dtype=pd.Float64Dtype())

# In [7]: s
# Out[7]: 
# 0     1.0
# 1    <NA>
# 2    <NA>
# 3     inf

sa = pd.Series(a, dtype=pd.ArrowDtype(a.type))

# In [11]: sa
# Out[11]: 
# 0     1.0
# 1     NaN
# 2    <NA>
# 3     inf
# dtype: double[pyarrow]

sc = sa.astype(pd.Float64Dtype())

# In [12]: sa.astype(pd.Float64Dtype())
# Out[12]: 
# 0     1.0
# 1    <NA>
# 2    <NA>
# 3     inf
# dtype: Float64

Issue Description

Presumably, the nullable Float64Dtype() is intended to allow users to disambiguate NaN from NA, but when constructing such a series from a pyarrow array (or casting to it via astype(...), all NaNs are converted to NA.

Expected Behavior

# In [12]: sa.astype(pd.Float64Dtype())
# Out[12]: 
# 0     1.0
# 1    NaN
# 2    <NA>
# 3     inf
# dtype: Float64

Installed Versions

In [3]: pd.show_versions()
/usr/local/google/home/swast/envs/bigframes/lib/python3.10/site-packages/_distutils_hack/init.py:33: UserWarning: Setuptools is replacing distutils.
warnings.warn("Setuptools is replacing distutils.")

INSTALLED VERSIONS

commit : e86ed37
python : 3.10.9.final.0
python-bits : 64
OS : Linux
OS-release : 6.5.3-1rodete1-amd64
Version : #1 SMP PREEMPT_DYNAMIC Debian 6.5.3-1rodete1 (2023-09-15)
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 2.1.1
numpy : 1.25.2
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 65.5.0
pip : 23.2.1
Cython : None
pytest : 7.4.2
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.15.0
pandas_datareader : None
bs4 : None
bottleneck : None
dataframe-api-compat: None
fastparquet : None
fsspec : 2023.6.0
gcsfs : 2023.6.0
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 12.0.1
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.11.2
sqlalchemy : 2.0.20
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugNeeds TriageIssue that has not been reviewed by a pandas team memberPDEP missing valuesIssues that would be addressed by the Ice Cream Agreement from the Aug 2023 sprint

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions