Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import sqlalchemy as sa
import pandas as pd
e = sa.create_engine(db_uri) # Any Microsoft SQL Server uri
with e.connect() as conn:
# SQL Server query -- If using another RDBMS, please adjust.
q = "SELECT CAST(CURRENT_TIMESTAMP as date) D, CAST(CURRENT_TIMESTAMP as time) T, CURRENT_TIMESTAMP DT"
# Execute query with SQLAlchemy
r = conn.exec_driver_sql(q)
# Result metadata has the correct data types for each column
print(r.cursor.description)
# (('D', <class 'datetime.date'>, None, 10, 10, 0, True), ('T', <class 'datetime.time'>, None, 16, 16, 7, True), ('DT', <class 'datetime.datetime'>, None, 23, 23, 3, False))
# Execute query with read_sql()
df = pd.read_sql(sql=q, con=db_uri, dtype_backend="pyarrow")
# Dataframe metadata has the correct data type only for the last column (datetime).
print(df.dtypes)
# D string[pyarrow]
# T string[pyarrow]
# DT timestamp[ns][pyarrow]
Issue Description
When used with pyarrow
backend Pandas read_sql()
does not handle date
nor time
datatypes correctly.
But it works for datetime
datatypes.
The above example uses Microsoft SQL Server but can be reproduced in any other database.
Expected Behavior
print(df.dtypes)
# D date64[ns][pyarrow]
# T time64[ns][pyarrow]
# DT timestamp[ns][pyarrow]
Installed Versions
INSTALLED VERSIONS
commit : a671b5a
python : 3.11.7.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.20348
machine : AMD64
processor : Intel64 Family 6 Model 183 Stepping 1, GenuineIntel
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : pt_BR.cp1252
pandas : 2.1.4
numpy : 1.26.2
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 69.0.2
pip : 23.3.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader : None
bs4 : None
bottleneck : 1.3.7
dataframe-api-compat: None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : 0.58.1
numexpr : 2.8.8
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 14.0.1
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : 2.0.23
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None