Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
This fails with pyarrow types but works with legacy types:
>>> pd.Series([2.3, 2.5], dtype='float64[pyarrow]').astype('int64[pyarrow]')
---------------------------------------------------------------------------
ArrowInvalid Traceback (most recent call last)
Cell In[100], line 1
----> 1 pd.Series([2.3, 2.5], dtype='float64[pyarrow]').astype('int64[pyarrow]')
File ~/.envs/pd22rc/lib/python3.11/site-packages/pandas/core/generic.py:6637, in NDFrame.astype(self, dtype, copy, errors)
6631 results = [
6632 ser.astype(dtype, copy=copy, errors=errors) for _, ser in self.items()
6633 ]
6635 else:
6636 # else, only a single dtype is given
-> 6637 new_data = self._mgr.astype(dtype=dtype, copy=copy, errors=errors)
6638 res = self._constructor_from_mgr(new_data, axes=new_data.axes)
6639 return res.__finalize__(self, method="astype")
File ~/.envs/pd22rc/lib/python3.11/site-packages/pandas/core/internals/managers.py:431, in BaseBlockManager.astype(self, dtype, copy, errors)
428 elif using_copy_on_write():
429 copy = False
--> 431 return self.apply(
432 "astype",
433 dtype=dtype,
434 copy=copy,
435 errors=errors,
436 using_cow=using_copy_on_write(),
437 )
File ~/.envs/pd22rc/lib/python3.11/site-packages/pandas/core/internals/managers.py:364, in BaseBlockManager.apply(self, f, align_keys, **kwargs)
362 applied = b.apply(f, **kwargs)
363 else:
--> 364 applied = getattr(b, f)(**kwargs)
365 result_blocks = extend_blocks(applied, result_blocks)
367 out = type(self).from_blocks(result_blocks, self.axes)
File ~/.envs/pd22rc/lib/python3.11/site-packages/pandas/core/internals/blocks.py:754, in Block.astype(self, dtype, copy, errors, using_cow, squeeze)
751 raise ValueError("Can not squeeze with more than one column.")
752 values = values[0, :] # type: ignore[call-overload]
--> 754 new_values = astype_array_safe(values, dtype, copy=copy, errors=errors)
756 new_values = maybe_coerce_values(new_values)
758 refs = None
File ~/.envs/pd22rc/lib/python3.11/site-packages/pandas/core/dtypes/astype.py:237, in astype_array_safe(values, dtype, copy, errors)
234 dtype = dtype.numpy_dtype
236 try:
--> 237 new_values = astype_array(values, dtype, copy=copy)
238 except (ValueError, TypeError):
239 # e.g. _astype_nansafe can fail on object-dtype of strings
240 # trying to convert to float
241 if errors == "ignore":
File ~/.envs/pd22rc/lib/python3.11/site-packages/pandas/core/dtypes/astype.py:179, in astype_array(values, dtype, copy)
175 return values
177 if not isinstance(values, np.ndarray):
178 # i.e. ExtensionArray
--> 179 values = values.astype(dtype, copy=copy)
181 else:
182 values = _astype_nansafe(values, dtype, copy=copy)
File ~/.envs/pd22rc/lib/python3.11/site-packages/pandas/core/arrays/base.py:709, in ExtensionArray.astype(self, dtype, copy)
707 if isinstance(dtype, ExtensionDtype):
708 cls = dtype.construct_array_type()
--> 709 return cls._from_sequence(self, dtype=dtype, copy=copy)
711 elif lib.is_np_dtype(dtype, "M"):
712 from pandas.core.arrays import DatetimeArray
File ~/.envs/pd22rc/lib/python3.11/site-packages/pandas/core/arrays/arrow/array.py:281, in ArrowExtensionArray._from_sequence(cls, scalars, dtype, copy)
277 """
278 Construct a new ExtensionArray from a sequence of scalars.
279 """
280 pa_type = to_pyarrow_type(dtype)
--> 281 pa_array = cls._box_pa_array(scalars, pa_type=pa_type, copy=copy)
282 arr = cls(pa_array)
283 return arr
File ~/.envs/pd22rc/lib/python3.11/site-packages/pandas/core/arrays/arrow/array.py:497, in ArrowExtensionArray._box_pa_array(cls, value, pa_type, copy)
495 else:
496 try:
--> 497 pa_array = pa_array.cast(pa_type)
498 except (
499 pa.ArrowInvalid,
500 pa.ArrowTypeError,
501 pa.ArrowNotImplementedError,
502 ):
503 if pa.types.is_string(pa_array.type) or pa.types.is_large_string(
504 pa_array.type
505 ):
506 # TODO: Move logic in _from_sequence_of_strings into
507 # _box_pa_array
File ~/.envs/pd22rc/lib/python3.11/site-packages/pyarrow/table.pxi:565, in pyarrow.lib.ChunkedArray.cast()
File ~/.envs/pd22rc/lib/python3.11/site-packages/pyarrow/compute.py:404, in cast(arr, target_type, safe, options, memory_pool)
402 else:
403 options = CastOptions.safe(target_type)
--> 404 return call_function("cast", [arr], options, memory_pool)
File ~/.envs/pd22rc/lib/python3.11/site-packages/pyarrow/_compute.pyx:590, in pyarrow._compute.call_function()
File ~/.envs/pd22rc/lib/python3.11/site-packages/pyarrow/_compute.pyx:385, in pyarrow._compute.Function.call()
File ~/.envs/pd22rc/lib/python3.11/site-packages/pyarrow/error.pxi:154, in pyarrow.lib.pyarrow_internal_check_status()
File ~/.envs/pd22rc/lib/python3.11/site-packages/pyarrow/error.pxi:91, in pyarrow.lib.check_status()
ArrowInvalid: Float value 2.3 was truncated converting to int64
Issue Description
Converting pyarrow floats to integers requires passing through legacy types
Expected Behavior
I would expect the same behavior with legacy pandas types
Installed Versions
commit : d4c8d82
python : 3.11.6.final.0
python-bits : 64
OS : Darwin
OS-release : 23.2.0
Version : Darwin Kernel Version 23.2.0: Wed Nov 15 21:53:18 PST 2023; root:xnu-10002.61.3~2/RELEASE_ARM64_T6000
machine : arm64
processor : arm
byteorder : little
LC_ALL : en_US.UTF-8
LANG : None
LOCALE : en_US.UTF-8
pandas : 2.2.0rc0
numpy : 1.26.2
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 68.2.2
pip : 23.3.1
Cython : 3.0.7
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.4
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.19.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.2
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.8.2
numba : 0.58.1
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 14.0.2
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.11.4
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None