Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this issue exists on the latest version of pandas.
-
I have confirmed this issue exists on the main branch of pandas.
Reproducible Example
In a jupyter notebook
import pandas as pd
import numpy as np
n = 1_000_000
%time a = pd.Series(np.repeat(pd.Timestamp('2019-01-01 00:00:00', tz=None), n))
%time b = pd.Series(np.repeat(pd.Timestamp('2019-01-01 00:00:00', tz='UTC'), n))
PU times: user 1.88 s, sys: 11.9 ms, total: 1.89 s
Wall time: 1.88 s
CPU times: user 315 ms, sys: 3.99 ms, total: 319 ms
Wall time: 319 ms
Installed Versions
INSTALLED VERSIONS
commit : a671b5a
python : 3.10.6.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.0-76-generic
Version : #83-Ubuntu SMP Thu Jun 15 19:16:32 UTC 2023
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_GB.utf8
LANG : C.UTF-8
LOCALE : en_GB.UTF-8
pandas : 2.1.4
numpy : 1.24.4
pytz : 2023.3
dateutil : 2.8.2
setuptools : 68.0.0
pip : 23.2.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.14.0
pandas_datareader : None
bs4 : 4.12.2
bottleneck : None
dataframe-api-compat: None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.7.2
numba : 0.57.1
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 14.0.2
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.11.1
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : 0.21.0
tzdata : 2023.3
qtpy : 2.3.1
pyqt5 : None
Prior Performance
No response