Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
if __name__ == "__main__":
df = pd.DataFrame(
[
["2023-09-29 02:55:54"],
["2023-09-29 02:56:03"],
],
columns=["timestamp"],
dtype="datetime64[ms]",
)
serialized = df.to_json()
print(serialized)
# Got: {"timestamp":{"0":1695956,"1":1695956}}
# Should be: {"timestamp":{"0":1695956154000,"1":1695956163000}}
deserialized = pd.read_json(serialized, convert_dates=["timestamp"])
print(pd.to_datetime(deserialized["timestamp"], unit="ms"))
# Got:
# 0 1970-01-01 00:28:15.956
# 1 1970-01-01 00:28:15.956
# Instead of:
# 0 2023-09-29 02:55:54
# 1 2023-09-29 02:56:03
Issue Description
When a dataframe contains a column which dtype is datetime64[ms]
and one tries to convert it to json using df.to_json()
the data does not correspond to the correct value. So trying to convert it back will give the default timestamp.
See example.
Expected Behavior
The json values for the timestamp should be the correspoinding one for the given date string so it we can restore the correct date/time.
It works when using datetime64[ns].
Installed Versions
INSTALLED VERSIONS
commit : bdc79c1
python : 3.12.1.final.0
python-bits : 64
OS : Linux
OS-release : 5.4.0-150-generic
Version : #167~18.04.1-Ubuntu SMP Wed May 24 00:51:42 UTC 2023
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.1
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.8.2
setuptools : 69.1.1
pip : 23.3.1
Cython : None
pytest : 8.0.2
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : 2.9.9
jinja2 : 3.1.3
IPython : None
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 15.0.0
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : 2.0.27
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : 0.22.0
tzdata : 2024.1
qtpy : None
pyqt5 : None
None