Skip to content

BUG: Column of dtype Categorical in DataFrame encounters error when taking a row that includes nan in the column #58954

Open
@cinntamani

Description

@cinntamani

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import numpy as np
import pandas as pd

df2 = pd.DataFrame({'a': [1, 2], 'b': pd.Categorical([3, np.nan])})
df2.dtypes
df2.iloc[0, :] # The series has dtype int
df2.iloc[1, :] # ValueError: cannot convert float NaN to integer

df2 = pd.DataFrame({'a': [1., 2.], 'b': pd.Categorical([3, np.nan])})
df2.dtypes
df2.iloc[0, :] # The series has dtype float
df2.iloc[1, :] # OK, because the first column is float

df2 = pd.DataFrame({'a': [1, 2], 'b': pd.Series([3, np.nan], dtype=object)})
df2.dtypes
df2.iloc[0, :] # The series has dtype object
df2.iloc[1, :] # OK, because the Series of dtype object can hold mixed element type

Issue Description

When columns are created as pd.Categorical, taking a row out sometimes encounter strange error, because a row is of type pd.Series, which has to take a fixed type for all the elements. If there is np.nan in the row, it might throw error if the earlier column is of type int. Would it make sense to make the row ALWAYS take dtype object, because it is very common to have mixed types as row ALWAYS spans different columns?

Expected Behavior

Taking a row out of a DataFrame that has a pd.Categorical column should not report inconsistent error, depending on what earlier columns are present.

Installed Versions

INSTALLED VERSIONS

commit : ba1cccd
python : 3.11.5.final.0
python-bits : 64
OS : Darwin
OS-release : 23.4.0
Version : Darwin Kernel Version 23.4.0: Fri Mar 15 00:10:42 PDT 2024; root:xnu-10063.101.17~1/RELEASE_ARM64_T6000
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 2.1.0
numpy : 1.25.2
pytz : 2023.3
dateutil : 2.8.2
setuptools : 65.5.0
pip : 24.0
Cython : None
pytest : 7.4.0
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.3
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.14.0
pandas_datareader : None
bs4 : 4.12.2
bottleneck : None
dataframe-api-compat: None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.8.2
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.11.2
sqlalchemy : None
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugCategoricalCategorical Data TypeIndexingRelated to indexing on series/frames, not to indexes themselves

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions