Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import numpy as np
datetime_column = "datetime"
datetime_series = pd.date_range(start="2020-01-01", periods=10, freq="D")
datetime_series = datetime_series.append(datetime_series)
predictions = pd.DataFrame(
{
datetime_column: datetime_series,
"prediction": np.random.rand(len(datetime_series)),
"id": np.repeat(["A", "B"], 10),
"area": np.repeat(["fr", "fr", "de", "de", "fr"], 4),
}
)
print(predictions.groupby(["id", "area"]).rolling("7d", on="datetime").max())
datetime prediction
id area
A de 8 2020-01-09 0.768346
9 2020-01-10 0.768346
fr 0 2020-01-01 0.159567
1 2020-01-02 0.722039
2 2020-01-03 0.722039
3 2020-01-04 0.922641
4 2020-01-05 0.922641
5 2020-01-06 0.922641
6 2020-01-07 0.922641
7 2020-01-08 0.922641
B de 10 2020-01-01 0.158251
11 2020-01-02 0.814331
12 2020-01-03 0.814331
13 2020-01-04 0.814331
14 2020-01-05 0.814331
15 2020-01-06 0.943016
fr 16 2020-01-07 0.975385
17 2020-01-08 0.975385
18 2020-01-09 0.975385
19 2020-01-10 0.975385
print(predictions.groupby(["id", "area"]).rolling("7d", on="datetime")[["prediction"]].max())
prediction
id area datetime
A de 2020-01-09 0.768346
2020-01-10 0.768346
fr 2020-01-01 0.159567
2020-01-02 0.722039
2020-01-03 0.722039
2020-01-04 0.922641
2020-01-05 0.922641
2020-01-06 0.922641
2020-01-07 0.922641
2020-01-08 0.922641
B de 2020-01-01 0.158251
2020-01-02 0.814331
2020-01-03 0.814331
2020-01-04 0.814331
2020-01-05 0.814331
2020-01-06 0.943016
fr 2020-01-07 0.975385
2020-01-08 0.975385
2020-01-09 0.975385
2020-01-10 0.975385
Issue Description
The only difference is that in the second case I am explicitly selecting a single column [[predictions]]
whereas in the first example I am calling it on the full dataframe. This shouldn't make a difference as the dataframe only contains the predictions column outside of the columns used to group and roll on.
This difference causes two issues in the dataframe where I don't select a subset of the columns:
- The old index is appended as an additional unnamed level
- The datetime column is kept as a column instead of as an index level
Expected Behavior
I would expect both cases to behave the way the second example does, with id, area, datetime
as the index levels.
Installed Versions
INSTALLED VERSIONS
commit : d9cdd2e
python : 3.10.13.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.0-1066-azure
Version : #75-Ubuntu SMP Thu May 30 14:29:45 UTC 2024
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.2
numpy : 2.1.0
pytz : 2024.1
dateutil : 2.9.0.post0
setuptools : None
pip : None
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 8.26.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2024.1
qtpy : None
pyqt5 : None