Skip to content

BUG: inconsistent indices in GroupByRolling when selecting or not selecting subset of columns #59567

Open
@inigohidalgo

Description

@inigohidalgo

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
import numpy as np
datetime_column = "datetime"
datetime_series = pd.date_range(start="2020-01-01", periods=10, freq="D")
datetime_series = datetime_series.append(datetime_series)

predictions = pd.DataFrame(
    {
        datetime_column: datetime_series,
        "prediction": np.random.rand(len(datetime_series)),
        "id": np.repeat(["A", "B"], 10),
        "area": np.repeat(["fr", "fr", "de", "de", "fr"], 4),
    }
)
print(predictions.groupby(["id", "area"]).rolling("7d", on="datetime").max())
             datetime  prediction
id area                          
A  de   8  2020-01-09    0.768346
        9  2020-01-10    0.768346
   fr   0  2020-01-01    0.159567
        1  2020-01-02    0.722039
        2  2020-01-03    0.722039
        3  2020-01-04    0.922641
        4  2020-01-05    0.922641
        5  2020-01-06    0.922641
        6  2020-01-07    0.922641
        7  2020-01-08    0.922641
B  de   10 2020-01-01    0.158251
        11 2020-01-02    0.814331
        12 2020-01-03    0.814331
        13 2020-01-04    0.814331
        14 2020-01-05    0.814331
        15 2020-01-06    0.943016
   fr   16 2020-01-07    0.975385
        17 2020-01-08    0.975385
        18 2020-01-09    0.975385
        19 2020-01-10    0.975385
print(predictions.groupby(["id", "area"]).rolling("7d", on="datetime")[["prediction"]].max())
                    prediction
id area datetime              
A  de   2020-01-09    0.768346
        2020-01-10    0.768346
   fr   2020-01-01    0.159567
        2020-01-02    0.722039
        2020-01-03    0.722039
        2020-01-04    0.922641
        2020-01-05    0.922641
        2020-01-06    0.922641
        2020-01-07    0.922641
        2020-01-08    0.922641
B  de   2020-01-01    0.158251
        2020-01-02    0.814331
        2020-01-03    0.814331
        2020-01-04    0.814331
        2020-01-05    0.814331
        2020-01-06    0.943016
   fr   2020-01-07    0.975385
        2020-01-08    0.975385
        2020-01-09    0.975385
        2020-01-10    0.975385

Issue Description

The only difference is that in the second case I am explicitly selecting a single column [[predictions]] whereas in the first example I am calling it on the full dataframe. This shouldn't make a difference as the dataframe only contains the predictions column outside of the columns used to group and roll on.

This difference causes two issues in the dataframe where I don't select a subset of the columns:

  1. The old index is appended as an additional unnamed level
  2. The datetime column is kept as a column instead of as an index level

Expected Behavior

I would expect both cases to behave the way the second example does, with id, area, datetime as the index levels.

Installed Versions

INSTALLED VERSIONS

commit : d9cdd2e
python : 3.10.13.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.0-1066-azure
Version : #75-Ubuntu SMP Thu May 30 14:29:45 UTC 2024
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 2.2.2
numpy : 2.1.0
pytz : 2024.1
dateutil : 2.9.0.post0
setuptools : None
pip : None
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 8.26.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2024.1
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions