Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
n = 5
p = 2
dfA = pd.DataFrame(np.random.rand(n,p),
columns=['A0','B0'],
index=pd.period_range(start='2000-1-1',periods=n,freq='Y'))
dfQ = pd.DataFrame(np.random.rand(n,p),
columns=['A0','B0'],
index=pd.period_range(start='2000-1-1',periods=n,freq='Q'))
dfM = pd.DataFrame(np.random.rand(n,p),
columns=['A0','B0'],
index=pd.period_range(start='2000-1-1',periods=n,freq='M'))
df1 = dfA.loc[:,['A0']].T.stack()
df2 = dfA.loc[:,['B0']].T.stack()
df3 = dfQ.loc[:,['A0']].T.stack()
df4 = dfQ.loc[:,['B0']].T.stack()
df5 = dfM.loc[:,['A0']].T.stack()
df6 = dfM.loc[:,['B0']].T.stack()
# these work
pd.concat([df1,df4])
pd.concat([df1,df2])
pd.concat([df1,df3])
pd.concat([df1,df2,df3])
pd.concat([dfA['A0'],dfQ['A0'],dfM['A0']])
# error
pd.concat([df1,df3,df2])
pd.concat([df1,df2,df3,df4])
pd.concat([df1,df3,df5])
Issue Description
pd.concat() can concatenate 3 multi-index dataframes when they have 2 frequencies, but cannot concatenate 4 dataframes.
Expected Behavior
pd.concat() should be able to concatenate a list of mixed-freq multiindex dataframes no matter how many items the list has.
Installed Versions
INSTALLED VERSIONS
commit : d9cdd2e
python : 3.12.4.final.0
python-bits : 64
OS : Windows
OS-release : 2016Server
Version : 10.0.14393
machine : AMD64
processor : Intel64 Family 6 Model 85 Stepping 4, GenuineIntel
byteorder : little
LC_ALL : None
LANG : en
LOCALE : English_United States.1252
pandas : 2.2.2
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.9.0.post0
setuptools : 72.1.0
pip : 24.0
Cython : 3.0.11
pytest : None
hypothesis : None
sphinx : 8.0.2
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.4
IPython : 8.26.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2024.6.1
gcsfs : None
matplotlib : 3.9.1.post1
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 17.0.0
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.14.0
sqlalchemy : None
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
zstandard : None
tzdata : 2024.1
qtpy : 2.4.1
pyqt5 : None