Skip to content

BUG: DataFrame.query() throws error when df has duplicate column names #59950

Closed
@ddenuyl-bebr

Description

@ddenuyl-bebr

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd

df = pd.DataFrame({'a': range(3), 'b': range(3), 'c': range(3)}).rename(columns={'b': 'a'})
print(df.query('c == 1'))

Issue Description

Since pandas 2.2.1 this throws an unexpected error:
TypeError: dtype 'a int64 a int64 dtype: object' not understood

This is because DataFrame.query() calls DataFrame.eval() which in turn calls DataFrame._get_cleaned_column_resolvers().

The dict comprehension in DataFrame._get_cleaned_column_resolvers() was changed in version 2.2.1.
version 2.2.0

return {
       clean_column_name(k): Series(
            v, copy=False, index=self.index, name=k
       ).__finalize__(self)
       for k, v in zip(self.columns, self._iter_column_arrays())
       if not isinstance(k, int)
 }

version 2.2.1

return {
            clean_column_name(k): Series(
                v, copy=False, index=self.index, name=k, dtype=self.dtypes[k]
            ).__finalize__(self)
            for k, v in zip(self.columns, self._iter_column_arrays())
            if not isinstance(k, int)
   }

since the dtypes are now checked when the Series are created, this introduces the error described above, since for a duplicate
column name self.dtypes[k] returns a Series instead of single value.

Expected Behavior

  1. I would expect either the behavior prior to v2.2.1 where the above example would return:
>>> df.query('c == 1')
   a  a  c
1  1  1  1

moreover, calling query() on column 'a' also works:

>>> df.query('a == 1')
   a  a  c
1  1  1  1

or
2) If above behavior is unwanted, I would except better error handling, smt like:

>>> df.query('c == 1')
DuplicateColumnError: DataFrame.query() is not supported for DataFrames with duplicate column names

Installed Versions

INSTALLED VERSIONS

commit : bdc79c1
python : 3.11.6.final.0
python-bits : 64
OS : Linux
OS-release : 5.4.0-165-generic
Version : #182-Ubuntu SMP Mon Oct 2 19:43:28 UTC 2023
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.1
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.8.2
setuptools : 69.1.1
pip : 23.0
Cython : None
pytest : 8.2.0
hypothesis : 6.100.4
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 5.2.2
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.3
IPython : None
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : 0.19.2
pyarrow : 15.0.0
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : 2.0.27
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
zstandard : None
tzdata : 2024.1
qtpy : None
pyqt5 : None

Metadata

Metadata

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions