Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
dates = ["2024-01-01", "2024-01-02", "2024-01-03"]
df = pd.DataFrame({"date": dates})
df["date"] = pd.to_datetime(df["date"], format="%Y-%m-%d")
print(df.dtypes["date"]) # datetime64[ns]
df["date"] = df["date"].astype("datetime64[ms]")
print(df.dtypes["date"]) # datetime64[ms]
print(df) # dates are OK
# date
# 0 2024-01-01
# 1 2024-01-02
# 2 2024-01-03
# up to now the data was actually read from a parquet file
# where the date column was datetime64[ms]
df["date"] = pd.to_datetime(df["date"], unit="ns")
# it still is datetime64[ms]
assert(df.dtypes["date"] == "datetime64[ns]")
Issue Description
This is a rather constructed case but we had a very subtle bug reading parquet data that had the ds
column stored as datetime64[ms]
(previously str) and actually needed the result as datetime64[ns]
.
While to_datetime
works for other types it does not change the used unit, when the underlying type is already datetime64
- and it does so silently.
Expected Behavior
I would either expect an exception, that the type already is datetime64
or the result to have the correct unit - here: datetime64[ns]
and not using the same as the input (here: datetime64[ms]
)
Installed Versions
INSTALLED VERSIONS
commit : 0691c5c
python : 3.12.2
python-bits : 64
OS : Linux
OS-release : 6.8.0-48-generic
Version : #48~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Oct 7 11:24:13 UTC 2
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.3
numpy : 2.1.3
pytz : 2024.2
dateutil : 2.9.0.post0
pip : 24.0
Cython : None
sphinx : None
IPython : 8.29.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2024.10.0
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.4
lxml.etree : None
matplotlib : 3.9.2
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 18.0.0
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : 2024.10.0
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2024.2
qtpy : None
pyqt5 : None