Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this issue exists on the latest version of pandas.
-
I have confirmed this issue exists on the main branch of pandas.
Reproducible Example
While working on upgrading pandas version on an old project, I found these perf regressions. mean(axis=1) seems around 30% slower on a dataframe with nans, then if there's a copy(), it becomes almost twice slower. I have tried profiling with no luck.
import pandas as pd
import numpy as np
p = 0.1
df = pd.DataFrame(np.random.rand(2988, 1471))
df.columns = df.columns.astype(str)
df_nan = df.mask(np.random.choice([True, False], size=df.shape, p=[p, 1 - p]))
df_nan_copy = df_nan.copy()
pandas 2.2.2:
In [4]: %timeit df_nan.mean(axis=1)
9.71 ms ± 66.9 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [5]: %timeit df_nan_copy.mean(axis=1)
16 ms ± 174 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)
pandas 0.22.0 (python 3.6):
In [2]: %timeit df_nan.mean(axis=1)
6.68 ms ± 46 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [3]: %timeit df_nan_copy.mean(axis=1)
7.98 ms ± 94.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Installed Versions
pandas : 2.2.2
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.9.0.post0
setuptools : 69.5.1
pip : 24.3.1
Cython : None
pytest : 7.4.4
hypothesis : None
sphinx : 7.3.7
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 5.2.1
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.4
IPython : 8.25.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
bottleneck : 1.3.7
dataframe-api-compat : None
fastparquet : None
fsspec : 2024.3.1
gcsfs : None
matplotlib : 3.8.4
numba : 0.59.1
numexpr : 2.8.7
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 14.0.2
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : 2024.3.1
scipy : 1.13.1
sqlalchemy : 2.0.30
tables : 3.9.2
tabulate : 0.9.0
xarray : 2023.6.0
xlrd : None
zstandard : 0.22.0
tzdata : 2023.3
qtpy : 2.4.1
pyqt5 : None
Prior Performance
pandas 0.22.0