Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
- Create a series with
Index
and a MultiIndex to use for reindexing later
>>> series = pd.Series(
... [26.7300, 24.2550],
... index=pd.Index([81, 82], name='a')
... )
>>> series
a
81 26.730
82 24.255
dtype: float64
>>> series.index
Index([81, 82], dtype='int64', name='a')
>>> other_index = pd.MultiIndex(
... levels=[
... pd.Index([81, 82], name='a'),
... pd.Index([np.nan], name='b'),
... pd.Index([
... '2018-06-01', '2018-07-01'
... ], name='c')
... ],
... codes=[
... [0, 0, 1, 1],
... [0, 0, 0, 0],
... [0, 1, 0, 1]
... ],
... names=['a', 'b', 'c']
... )
>>> other_index
MultiIndex([(81, nan, '2018-06-01'),
(81, nan, '2018-07-01'),
(82, nan, '2018-06-01'),
(82, nan, '2018-07-01')],
names=['a', 'b', 'c'])
reindex
toMultiIndex
(other_index
) which expandsseries.index
by two more levels.- unfortunately the
reindex
sets all values of the original series to NaN which can be fixed by turningseries.index
into a 1-levelMultiIndex
first
>>> series.reindex(other_index) # this removes all values of the series
a b c
81 NaN 2018-06-01 NaN
2018-07-01 NaN
82 NaN 2018-06-01 NaN
2018-07-01 NaN
dtype: float64
- apply
to_mi(...)
to turn theseries.index
into a 1-levelMultiIndex
- rerun
reindex
on the newseries
withMultiIndex
and the values are maintained/filled as expected
>>> def to_mi(series):
... if isinstance(series.index, pd.MultiIndex):
... series_mi = series.index
... else:
... level_names = [series.index.name]
... level_values = [series.index]
... series_mi = pd.MultiIndex.from_arrays(level_values, names=level_names)
... series_with_mi = pd.Series(series.values, index=series_mi, name=series.name)
... return series_with_mi
...
>>> series_mi = to_mi(series)
>>> series_mi
a
81 26.730
82 24.255
dtype: float64
>>> series_mi.index
MultiIndex([(81,),
(82,)],
names=['a'])
>>> series_mi.reindex(other_index)
a b c
81 NaN 2018-06-01 26.730
2018-07-01 26.730
82 NaN 2018-06-01 24.255
2018-07-01 24.255
dtype: float64
Issue Description
In the above case, series.reindex(multi_index)
will turn the series values to NaN when the series has a single Index
. However when the series index is converted to a 1-level MultiIndex
prior to the reindex
, the values are maintained and filled as expected.
In my opinion it shouldn't matter if a 1-level MultiIndex
or an Index
is used for a reindex
- the outcomes should be the same.
As a further discussion point (here or elsewhere), this issue (and others) also begs the question why a distinction between Index
and MultiIndex
is necessary (I suspect there are historic reasons). I would imagine that many issues (and code) would go away if MultiIndex
was used exclusively (even for 1-dimensional indices).
Expected Behavior
The missing levels in series_mi
(compared to other_index
) are added and the values of the partial index from the original series are used to fill the places of the added indices.
>>> series_mi.reindex(other_index)
a b c
81 NaN 2018-06-01 26.730 # from index <81> of `series` (`series_mi`)
2018-07-01 26.730 # from index <81> of `series` (`series_mi`)
82 NaN 2018-06-01 24.255 # from index <82> of `series` (`series_mi`)
2018-07-01 24.255 # from index <82> of `series` (`series_mi`)
dtype: float64
Installed Versions
INSTALLED VERSIONS
commit : 3979e95
python : 3.11.11
python-bits : 64
OS : Linux
OS-release : 6.12.11-200.fc41.x86_64
Version : #1 SMP PREEMPT_DYNAMIC Fri Jan 24 04:59:58 UTC 2025
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_AU.UTF-8
LOCALE : en_AU.UTF-8
pandas : 3.0.0.dev0+1909.g3979e954a3.dirty
numpy : 1.26.4
dateutil : 2.9.0.post0
pip : 24.2
Cython : 3.0.11
sphinx : 8.1.3
IPython : 8.32.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.13.3
blosc : None
bottleneck : 1.4.2
fastparquet : 2024.11.0
fsspec : 2025.2.0
html5lib : 1.1
hypothesis : 6.125.2
gcsfs : 2025.2.0
jinja2 : 3.1.5
lxml.etree : 5.3.0
matplotlib : 3.10.0
numba : 0.61.0
numexpr : 2.10.2
odfpy : None
openpyxl : 3.1.5
psycopg2 : 2.9.10
pymysql : 1.4.6
pyarrow : 19.0.0
pyreadstat : 1.2.8
pytest : 8.3.4
python-calamine : None
pytz : 2025.1
pyxlsb : 1.0.10
s3fs : 2025.2.0
scipy : 1.15.1
sqlalchemy : 2.0.38
tables : 3.10.2
tabulate : 0.9.0
xarray : 2024.9.0
xlrd : 2.0.1
xlsxwriter : 3.2.2
zstandard : 0.23.0
tzdata : 2025.1
qtpy : None
pyqt5 : None