Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import numpy as np
df = pd.DataFrame(
{
"A": [
np.array([1]),
np.array([2]),
np.array([3]),
np.array([4]),
np.array([5]),
],
"B": [10, 20, 30, 40, 50],
}
)
df = df[["A", "B"]].min(axis=1)
print(df)
Issue Description
The behavior of DataFrame.min(axis=1) when a column contains numpy.array elements has changed between pandas 2.2 and pandas 1.1. I did not find any mention of this change in the changelog, and it is unclear whether this is a regression or an intentional change.
Expected Behavior
Output on pandas 1.1
0 1
1 2
2 3
3 4
4 5
dtype: float64
Output on pandas 2.2
0 [1]
1 [2]
2 [3]
3 [4]
4 [5]
dtype: object
Installed Versions
INSTALLED VERSIONS
commit : 0691c5c
python : 3.12.4
python-bits : 64
OS : Darwin
OS-release : 24.3.0
Version : Darwin Kernel Version 24.3.0: Thu Jan 2 20:24:16 PST 2025; root:xnu-11215.81.4~3/RELEASE_ARM64_T6000
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.3
numpy : 2.2.4
pytz : 2025.2
dateutil : 2.9.0.post0
pip : 25.0.1
Cython : None
sphinx : None
IPython : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.6
lxml.etree : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : None
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2025.2
qtpy : None
pyqt5 : None