Closed
Description
It appears that Series' s.any
and s.all
methods miss level kwargs, unlike their statistical counterparts like s.sum
:
In [4]: s = pd.Series([0,1,2], index=[0,0,1])
In [5]: s.sum(level=0)
Out[5]:
0 1
1 2
dtype: int64
In [6]: s.prod(level=0)
Out[6]:
0 0
1 2
dtype: int64
In [7]: s.any(level=0)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-7-1d8c43752bc9> in <module>()
----> 1 s.any(level=0)
/home/immerrr/sources/pandas/pandas/core/series.pyc in f(self, *args, **kwargs)
74 @Appender(func.__doc__)
75 def f(self, *args, **kwargs):
---> 76 result = func(self.values, *args, **kwargs)
77 if isinstance(result, (pa.Array, Series)) and result.ndim == 0:
78 # return NumPy type
TypeError: _any() got an unexpected keyword argument 'level'
In [8]: s.all(level=0)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-8-bca0491001a6> in <module>()
----> 1 s.all(level=0)
/home/immerrr/sources/pandas/pandas/core/series.pyc in f(self, *args, **kwargs)
74 @Appender(func.__doc__)
75 def f(self, *args, **kwargs):
---> 76 result = func(self.values, *args, **kwargs)
77 if isinstance(result, (pa.Array, Series)) and result.ndim == 0:
78 # return NumPy type
TypeError: _all() got an unexpected keyword argument 'level'
Frames have those and I think so should series. Maybe, there are more reduction methods that I know not of that also miss those...