Skip to content

DOC: Correct/update skipna docstrings for any and all (#23109) #24069

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 12 commits into from
Dec 10, 2018
Merged
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 23 additions & 9 deletions pandas/core/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -9884,11 +9884,11 @@ def _add_numeric_operations(cls):
axis_descr, name, name2 = _doc_parms(cls)

cls.any = _make_logical_function(
cls, 'any', name, name2, axis_descr,
_any_desc, nanops.nanany, _any_examples, _any_see_also)
cls, 'any', name, name2, axis_descr, _any_desc, nanops.nanany,
_any_examples, _any_see_also, empty_value=False)
cls.all = _make_logical_function(
cls, 'all', name, name2, axis_descr, _all_doc,
nanops.nanall, _all_examples, _all_see_also)
cls, 'all', name, name2, axis_descr, _all_doc, nanops.nanall,
_all_examples, _all_see_also, empty_value=True)

@Substitution(outname='mad',
desc="Return the mean absolute deviation of the values "
Expand Down Expand Up @@ -10213,8 +10213,10 @@ def _doc_parms(cls):
Include only boolean columns. If None, will attempt to use everything,
then use only boolean data. Not implemented for Series.
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA.
Exclude NA/null values. If the entire row/column is NA and skipna is
True, then the result will be %(empty_value)s, as for an empty row/column.
If skipna is False, then NA are treated as True, because these are not
equal to zero.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a %(name1)s.
Expand Down Expand Up @@ -10244,6 +10246,10 @@ def _doc_parms(cls):
True
>>> pd.Series([True, False]).all()
False
>>> pd.Series([]).all()
True
>>> pd.Series([np.nan]).all()
True

DataFrames

Expand Down Expand Up @@ -10602,6 +10608,13 @@ def _doc_parms(cls):

>>> pd.Series([True, False]).any()
True
>>> pd.Series([]).any()
False
>>> pd.Series([np.nan]).any()
False
>>> pd.Series([np.nan]).any(skipna=False)
True


**DataFrame**

Expand Down Expand Up @@ -10886,10 +10899,11 @@ def cum_func(self, axis=None, skipna=True, *args, **kwargs):
return set_function_name(cum_func, name, cls)


def _make_logical_function(cls, name, name1, name2, axis_descr, desc, f,
examples, see_also):
def _make_logical_function(cls, name, name1, name2, axis_descr,
desc, f, examples, see_also, empty_value):
@Substitution(outname=name, desc=desc, name1=name1, name2=name2,
axis_descr=axis_descr, examples=examples, see_also=see_also)
empty_value=empty_value, axis_descr=axis_descr,
examples=examples, see_also=see_also)
@Appender(_bool_doc)
def logical_func(self, axis=0, bool_only=None, skipna=True, level=None,
**kwargs):
Expand Down