Skip to content

REF: misplaced Series.combine_first tests #32111

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 20, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 76 additions & 1 deletion pandas/tests/series/methods/test_combine_first.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,9 @@
from datetime import datetime

import numpy as np

from pandas import Period, Series, date_range, period_range
import pandas as pd
from pandas import Period, Series, date_range, period_range, to_datetime
import pandas._testing as tm


Expand All @@ -17,3 +20,75 @@ def test_combine_first_period_datetime(self):
result = a.combine_first(b)
expected = Series([1, 9, 9, 4, 5, 9, 7], index=idx, dtype=np.float64)
tm.assert_series_equal(result, expected)

def test_combine_first_name(self, datetime_series):
result = datetime_series.combine_first(datetime_series[:5])
assert result.name == datetime_series.name

def test_combine_first(self):
values = tm.makeIntIndex(20).values.astype(float)
series = Series(values, index=tm.makeIntIndex(20))

series_copy = series * 2
series_copy[::2] = np.NaN

# nothing used from the input
combined = series.combine_first(series_copy)

tm.assert_series_equal(combined, series)

# Holes filled from input
combined = series_copy.combine_first(series)
assert np.isfinite(combined).all()

tm.assert_series_equal(combined[::2], series[::2])
tm.assert_series_equal(combined[1::2], series_copy[1::2])

# mixed types
index = tm.makeStringIndex(20)
floats = Series(tm.randn(20), index=index)
strings = Series(tm.makeStringIndex(10), index=index[::2])

combined = strings.combine_first(floats)

tm.assert_series_equal(strings, combined.loc[index[::2]])
tm.assert_series_equal(floats[1::2].astype(object), combined.loc[index[1::2]])

# corner case
ser = Series([1.0, 2, 3], index=[0, 1, 2])
empty = Series([], index=[], dtype=object)
result = ser.combine_first(empty)
ser.index = ser.index.astype("O")
tm.assert_series_equal(ser, result)

def test_combine_first_dt64(self):

s0 = to_datetime(Series(["2010", np.NaN]))
s1 = to_datetime(Series([np.NaN, "2011"]))
rs = s0.combine_first(s1)
xp = to_datetime(Series(["2010", "2011"]))
tm.assert_series_equal(rs, xp)

s0 = to_datetime(Series(["2010", np.NaN]))
s1 = Series([np.NaN, "2011"])
rs = s0.combine_first(s1)
xp = Series([datetime(2010, 1, 1), "2011"])
tm.assert_series_equal(rs, xp)

def test_combine_first_dt_tz_values(self, tz_naive_fixture):
ser1 = pd.Series(
pd.DatetimeIndex(["20150101", "20150102", "20150103"], tz=tz_naive_fixture),
name="ser1",
)
ser2 = pd.Series(
pd.DatetimeIndex(["20160514", "20160515", "20160516"], tz=tz_naive_fixture),
index=[2, 3, 4],
name="ser2",
)
result = ser1.combine_first(ser2)
exp_vals = pd.DatetimeIndex(
["20150101", "20150102", "20150103", "20160515", "20160516"],
tz=tz_naive_fixture,
)
exp = pd.Series(exp_vals, name="ser1")
tm.assert_series_equal(exp, result)
4 changes: 0 additions & 4 deletions pandas/tests/series/test_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,10 +85,6 @@ def test_binop_maybe_preserve_name(self, datetime_series):
result = getattr(s, op)(cp)
assert result.name is None

def test_combine_first_name(self, datetime_series):
result = datetime_series.combine_first(datetime_series[:5])
assert result.name == datetime_series.name

def test_getitem_preserve_name(self, datetime_series):
result = datetime_series[datetime_series > 0]
assert result.name == datetime_series.name
Expand Down
72 changes: 1 addition & 71 deletions pandas/tests/series/test_combine_concat.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,8 @@
from datetime import datetime

import numpy as np
import pytest

import pandas as pd
from pandas import DataFrame, Series, to_datetime
from pandas import DataFrame, Series
import pandas._testing as tm


Expand All @@ -22,42 +20,6 @@ def test_combine_scalar(self):
expected = pd.Series([min(i * 10, 22) for i in range(5)])
tm.assert_series_equal(result, expected)

def test_combine_first(self):
values = tm.makeIntIndex(20).values.astype(float)
series = Series(values, index=tm.makeIntIndex(20))

series_copy = series * 2
series_copy[::2] = np.NaN

# nothing used from the input
combined = series.combine_first(series_copy)

tm.assert_series_equal(combined, series)

# Holes filled from input
combined = series_copy.combine_first(series)
assert np.isfinite(combined).all()

tm.assert_series_equal(combined[::2], series[::2])
tm.assert_series_equal(combined[1::2], series_copy[1::2])

# mixed types
index = tm.makeStringIndex(20)
floats = Series(tm.randn(20), index=index)
strings = Series(tm.makeStringIndex(10), index=index[::2])

combined = strings.combine_first(floats)

tm.assert_series_equal(strings, combined.loc[index[::2]])
tm.assert_series_equal(floats[1::2].astype(object), combined.loc[index[1::2]])

# corner case
s = Series([1.0, 2, 3], index=[0, 1, 2])
empty = Series([], index=[], dtype=object)
result = s.combine_first(empty)
s.index = s.index.astype("O")
tm.assert_series_equal(s, result)

def test_update(self):
s = Series([1.5, np.nan, 3.0, 4.0, np.nan])
s2 = Series([np.nan, 3.5, np.nan, 5.0])
Expand Down Expand Up @@ -156,24 +118,6 @@ def get_result_type(dtype, dtype2):
result = pd.concat([Series(dtype=dtype), Series(dtype=dtype2)]).dtype
assert result.kind == expected

def test_combine_first_dt_tz_values(self, tz_naive_fixture):
ser1 = pd.Series(
pd.DatetimeIndex(["20150101", "20150102", "20150103"], tz=tz_naive_fixture),
name="ser1",
)
ser2 = pd.Series(
pd.DatetimeIndex(["20160514", "20160515", "20160516"], tz=tz_naive_fixture),
index=[2, 3, 4],
name="ser2",
)
result = ser1.combine_first(ser2)
exp_vals = pd.DatetimeIndex(
["20150101", "20150102", "20150103", "20160515", "20160516"],
tz=tz_naive_fixture,
)
exp = pd.Series(exp_vals, name="ser1")
tm.assert_series_equal(exp, result)

def test_concat_empty_series_dtypes(self):

# booleans
Expand Down Expand Up @@ -250,17 +194,3 @@ def test_concat_empty_series_dtypes(self):
# TODO: release-note: concat sparse dtype
expected = pd.SparseDtype("object")
assert result.dtype == expected

def test_combine_first_dt64(self):

s0 = to_datetime(Series(["2010", np.NaN]))
s1 = to_datetime(Series([np.NaN, "2011"]))
rs = s0.combine_first(s1)
xp = to_datetime(Series(["2010", "2011"]))
tm.assert_series_equal(rs, xp)

s0 = to_datetime(Series(["2010", np.NaN]))
s1 = Series([np.NaN, "2011"])
rs = s0.combine_first(s1)
xp = Series([datetime(2010, 1, 1), "2011"])
tm.assert_series_equal(rs, xp)