Skip to content

REF/CLN: test_get_dummies #33184

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Apr 1, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
from pandas.core.dtypes.common import is_integer_dtype

import pandas as pd
from pandas import Categorical, DataFrame, Index, Series, get_dummies
from pandas import Categorical, CategoricalIndex, DataFrame, Series, get_dummies
import pandas._testing as tm
from pandas.core.arrays.sparse import SparseArray, SparseDtype

Expand All @@ -31,11 +31,11 @@ def effective_dtype(self, dtype):
return np.uint8
return dtype

def test_raises_on_dtype_object(self, df):
def test_get_dummies_raises_on_dtype_object(self, df):
with pytest.raises(ValueError):
get_dummies(df, dtype="object")

def test_basic(self, sparse, dtype):
def test_get_dummies_basic(self, sparse, dtype):
s_list = list("abc")
s_series = Series(s_list)
s_series_index = Series(s_list, list("ABC"))
Expand All @@ -56,7 +56,7 @@ def test_basic(self, sparse, dtype):
result = get_dummies(s_series_index, sparse=sparse, dtype=dtype)
tm.assert_frame_equal(result, expected)

def test_basic_types(self, sparse, dtype):
def test_get_dummies_basic_types(self, sparse, dtype):
# GH 10531
s_list = list("abc")
s_series = Series(s_list)
Expand Down Expand Up @@ -106,7 +106,7 @@ def test_basic_types(self, sparse, dtype):
result = result.sort_index()
tm.assert_series_equal(result, expected)

def test_just_na(self, sparse):
def test_get_dummies_just_na(self, sparse):
just_na_list = [np.nan]
just_na_series = Series(just_na_list)
just_na_series_index = Series(just_na_list, index=["A"])
Expand All @@ -123,7 +123,7 @@ def test_just_na(self, sparse):
assert res_series.index.tolist() == [0]
assert res_series_index.index.tolist() == ["A"]

def test_include_na(self, sparse, dtype):
def test_get_dummies_include_na(self, sparse, dtype):
s = ["a", "b", np.nan]
res = get_dummies(s, sparse=sparse, dtype=dtype)
exp = DataFrame(
Expand Down Expand Up @@ -152,7 +152,7 @@ def test_include_na(self, sparse, dtype):
)
tm.assert_numpy_array_equal(res_just_na.values, exp_just_na.values)

def test_unicode(self, sparse):
def test_get_dummies_unicode(self, sparse):
# See GH 6885 - get_dummies chokes on unicode values
import unicodedata

Expand All @@ -175,7 +175,7 @@ def test_dataframe_dummies_all_obj(self, df, sparse):
dtype=np.uint8,
)
if sparse:
expected = pd.DataFrame(
expected = DataFrame(
{
"A_a": SparseArray([1, 0, 1], dtype="uint8"),
"A_b": SparseArray([0, 1, 0], dtype="uint8"),
Expand Down Expand Up @@ -223,7 +223,7 @@ def test_dataframe_dummies_prefix_list(self, df, sparse):
cols = ["from_A_a", "from_A_b", "from_B_b", "from_B_c"]
expected = expected[["C"] + cols]

typ = SparseArray if sparse else pd.Series
typ = SparseArray if sparse else Series
expected[cols] = expected[cols].apply(lambda x: typ(x))
tm.assert_frame_equal(result, expected)

Expand All @@ -242,11 +242,11 @@ def test_dataframe_dummies_prefix_str(self, df, sparse):
# https://github.com/pandas-dev/pandas/issues/14427
expected = pd.concat(
[
pd.Series([1, 2, 3], name="C"),
pd.Series([1, 0, 1], name="bad_a", dtype="Sparse[uint8]"),
pd.Series([0, 1, 0], name="bad_b", dtype="Sparse[uint8]"),
pd.Series([1, 1, 0], name="bad_b", dtype="Sparse[uint8]"),
pd.Series([0, 0, 1], name="bad_c", dtype="Sparse[uint8]"),
Series([1, 2, 3], name="C"),
Series([1, 0, 1], name="bad_a", dtype="Sparse[uint8]"),
Series([0, 1, 0], name="bad_b", dtype="Sparse[uint8]"),
Series([1, 1, 0], name="bad_b", dtype="Sparse[uint8]"),
Series([0, 0, 1], name="bad_c", dtype="Sparse[uint8]"),
],
axis=1,
)
Expand All @@ -267,7 +267,7 @@ def test_dataframe_dummies_subset(self, df, sparse):
expected[["C"]] = df[["C"]]
if sparse:
cols = ["from_A_a", "from_A_b"]
expected[cols] = expected[cols].astype(pd.SparseDtype("uint8", 0))
expected[cols] = expected[cols].astype(SparseDtype("uint8", 0))
tm.assert_frame_equal(result, expected)

def test_dataframe_dummies_prefix_sep(self, df, sparse):
Expand All @@ -286,7 +286,7 @@ def test_dataframe_dummies_prefix_sep(self, df, sparse):
expected = expected[["C", "A..a", "A..b", "B..b", "B..c"]]
if sparse:
cols = ["A..a", "A..b", "B..b", "B..c"]
expected[cols] = expected[cols].astype(pd.SparseDtype("uint8", 0))
expected[cols] = expected[cols].astype(SparseDtype("uint8", 0))

tm.assert_frame_equal(result, expected)

Expand Down Expand Up @@ -323,7 +323,7 @@ def test_dataframe_dummies_prefix_dict(self, sparse):
columns = ["from_A_a", "from_A_b", "from_B_b", "from_B_c"]
expected[columns] = expected[columns].astype(np.uint8)
if sparse:
expected[columns] = expected[columns].astype(pd.SparseDtype("uint8", 0))
expected[columns] = expected[columns].astype(SparseDtype("uint8", 0))

tm.assert_frame_equal(result, expected)

Expand Down Expand Up @@ -359,7 +359,7 @@ def test_dataframe_dummies_with_na(self, df, sparse, dtype):
tm.assert_frame_equal(result, expected)

def test_dataframe_dummies_with_categorical(self, df, sparse, dtype):
df["cat"] = pd.Categorical(["x", "y", "y"])
df["cat"] = Categorical(["x", "y", "y"])
result = get_dummies(df, sparse=sparse, dtype=dtype).sort_index(axis=1)
if sparse:
arr = SparseArray
Expand All @@ -386,30 +386,30 @@ def test_dataframe_dummies_with_categorical(self, df, sparse, dtype):
"get_dummies_kwargs,expected",
[
(
{"data": pd.DataFrame(({"ä": ["a"]}))},
pd.DataFrame({"ä_a": [1]}, dtype=np.uint8),
{"data": DataFrame(({"ä": ["a"]}))},
DataFrame({"ä_a": [1]}, dtype=np.uint8),
),
(
{"data": pd.DataFrame({"x": ["ä"]})},
pd.DataFrame({"x_ä": [1]}, dtype=np.uint8),
{"data": DataFrame({"x": ["ä"]})},
DataFrame({"x_ä": [1]}, dtype=np.uint8),
),
(
{"data": pd.DataFrame({"x": ["a"]}), "prefix": "ä"},
pd.DataFrame({"ä_a": [1]}, dtype=np.uint8),
{"data": DataFrame({"x": ["a"]}), "prefix": "ä"},
DataFrame({"ä_a": [1]}, dtype=np.uint8),
),
(
{"data": pd.DataFrame({"x": ["a"]}), "prefix_sep": "ä"},
pd.DataFrame({"xäa": [1]}, dtype=np.uint8),
{"data": DataFrame({"x": ["a"]}), "prefix_sep": "ä"},
DataFrame({"xäa": [1]}, dtype=np.uint8),
),
],
)
def test_dataframe_dummies_unicode(self, get_dummies_kwargs, expected):
# GH22084 pd.get_dummies incorrectly encodes unicode characters
# GH22084 get_dummies incorrectly encodes unicode characters
# in dataframe column names
result = get_dummies(**get_dummies_kwargs)
tm.assert_frame_equal(result, expected)

def test_basic_drop_first(self, sparse):
def test_get_dummies_basic_drop_first(self, sparse):
# GH12402 Add a new parameter `drop_first` to avoid collinearity
# Basic case
s_list = list("abc")
Expand All @@ -430,7 +430,7 @@ def test_basic_drop_first(self, sparse):
result = get_dummies(s_series_index, drop_first=True, sparse=sparse)
tm.assert_frame_equal(result, expected)

def test_basic_drop_first_one_level(self, sparse):
def test_get_dummies_basic_drop_first_one_level(self, sparse):
# Test the case that categorical variable only has one level.
s_list = list("aaa")
s_series = Series(s_list)
Expand All @@ -448,7 +448,7 @@ def test_basic_drop_first_one_level(self, sparse):
result = get_dummies(s_series_index, drop_first=True, sparse=sparse)
tm.assert_frame_equal(result, expected)

def test_basic_drop_first_NA(self, sparse):
def test_get_dummies_basic_drop_first_NA(self, sparse):
# Test NA handling together with drop_first
s_NA = ["a", "b", np.nan]
res = get_dummies(s_NA, drop_first=True, sparse=sparse)
Expand Down Expand Up @@ -481,7 +481,7 @@ def test_dataframe_dummies_drop_first(self, df, sparse):
tm.assert_frame_equal(result, expected)

def test_dataframe_dummies_drop_first_with_categorical(self, df, sparse, dtype):
df["cat"] = pd.Categorical(["x", "y", "y"])
df["cat"] = Categorical(["x", "y", "y"])
result = get_dummies(df, drop_first=True, sparse=sparse)
expected = DataFrame(
{"C": [1, 2, 3], "A_b": [0, 1, 0], "B_c": [0, 0, 1], "cat_y": [0, 1, 1]}
Expand Down Expand Up @@ -521,24 +521,24 @@ def test_dataframe_dummies_drop_first_with_na(self, df, sparse):
expected = expected[["C", "A_b", "B_c"]]
tm.assert_frame_equal(result, expected)

def test_int_int(self):
def test_get_dummies_int_int(self):
data = Series([1, 2, 1])
result = pd.get_dummies(data)
result = get_dummies(data)
expected = DataFrame([[1, 0], [0, 1], [1, 0]], columns=[1, 2], dtype=np.uint8)
tm.assert_frame_equal(result, expected)

data = Series(pd.Categorical(["a", "b", "a"]))
result = pd.get_dummies(data)
data = Series(Categorical(["a", "b", "a"]))
result = get_dummies(data)
expected = DataFrame(
[[1, 0], [0, 1], [1, 0]], columns=pd.Categorical(["a", "b"]), dtype=np.uint8
[[1, 0], [0, 1], [1, 0]], columns=Categorical(["a", "b"]), dtype=np.uint8
)
tm.assert_frame_equal(result, expected)

def test_int_df(self, dtype):
def test_get_dummies_int_df(self, dtype):
data = DataFrame(
{
"A": [1, 2, 1],
"B": pd.Categorical(["a", "b", "a"]),
"B": Categorical(["a", "b", "a"]),
"C": [1, 2, 1],
"D": [1.0, 2.0, 1.0],
}
Expand All @@ -549,22 +549,22 @@ def test_int_df(self, dtype):
columns=columns,
)
expected[columns[2:]] = expected[columns[2:]].astype(dtype)
result = pd.get_dummies(data, columns=["A", "B"], dtype=dtype)
result = get_dummies(data, columns=["A", "B"], dtype=dtype)
tm.assert_frame_equal(result, expected)

def test_dataframe_dummies_preserve_categorical_dtype(self, dtype):
@pytest.mark.parametrize("ordered", [True, False])
def test_dataframe_dummies_preserve_categorical_dtype(self, dtype, ordered):
# GH13854
for ordered in [False, True]:
cat = pd.Categorical(list("xy"), categories=list("xyz"), ordered=ordered)
result = get_dummies(cat, dtype=dtype)
cat = Categorical(list("xy"), categories=list("xyz"), ordered=ordered)
result = get_dummies(cat, dtype=dtype)

data = np.array([[1, 0, 0], [0, 1, 0]], dtype=self.effective_dtype(dtype))
cols = pd.CategoricalIndex(
cat.categories, categories=cat.categories, ordered=ordered
)
expected = DataFrame(data, columns=cols, dtype=self.effective_dtype(dtype))
data = np.array([[1, 0, 0], [0, 1, 0]], dtype=self.effective_dtype(dtype))
cols = CategoricalIndex(
cat.categories, categories=cat.categories, ordered=ordered
)
expected = DataFrame(data, columns=cols, dtype=self.effective_dtype(dtype))

tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)

@pytest.mark.parametrize("sparse", [True, False])
def test_get_dummies_dont_sparsify_all_columns(self, sparse):
Expand Down Expand Up @@ -593,10 +593,10 @@ def test_get_dummies_duplicate_columns(self, df):
tm.assert_frame_equal(result, expected)

def test_get_dummies_all_sparse(self):
df = pd.DataFrame({"A": [1, 2]})
result = pd.get_dummies(df, columns=["A"], sparse=True)
df = DataFrame({"A": [1, 2]})
result = get_dummies(df, columns=["A"], sparse=True)
dtype = SparseDtype("uint8", 0)
expected = pd.DataFrame(
expected = DataFrame(
{
"A_1": SparseArray([1, 0], dtype=dtype),
"A_2": SparseArray([0, 1], dtype=dtype),
Expand All @@ -607,7 +607,7 @@ def test_get_dummies_all_sparse(self):
@pytest.mark.parametrize("values", ["baz"])
def test_get_dummies_with_string_values(self, values):
# issue #28383
df = pd.DataFrame(
df = DataFrame(
{
"bar": [1, 2, 3, 4, 5, 6],
"foo": ["one", "one", "one", "two", "two", "two"],
Expand All @@ -619,26 +619,4 @@ def test_get_dummies_with_string_values(self, values):
msg = "Input must be a list-like for parameter `columns`"

with pytest.raises(TypeError, match=msg):
pd.get_dummies(df, columns=values)


class TestCategoricalReshape:
def test_reshaping_multi_index_categorical(self):

cols = ["ItemA", "ItemB", "ItemC"]
data = {c: tm.makeTimeDataFrame() for c in cols}
df = pd.concat({c: data[c].stack() for c in data}, axis="columns")
df.index.names = ["major", "minor"]
df["str"] = "foo"

df["category"] = df["str"].astype("category")
result = df["category"].unstack()

dti = df.index.levels[0]
c = Categorical(["foo"] * len(dti))
expected = DataFrame(
{"A": c.copy(), "B": c.copy(), "C": c.copy(), "D": c.copy()},
columns=Index(list("ABCD"), name="minor"),
index=dti.rename("major"),
)
tm.assert_frame_equal(result, expected)
get_dummies(df, columns=values)
17 changes: 17 additions & 0 deletions pandas/tests/series/methods/test_unstack.py
Original file line number Diff line number Diff line change
Expand Up @@ -118,3 +118,20 @@ def test_unstack_mixed_type_name_in_multiindex(
expected_values, columns=expected_columns, index=expected_index,
)
tm.assert_frame_equal(result, expected)


def test_unstack_multi_index_categorical_values():

mi = tm.makeTimeDataFrame().stack().index.rename(["major", "minor"])
ser = pd.Series(["foo"] * len(mi), index=mi, name="category", dtype="category")

result = ser.unstack()

dti = ser.index.levels[0]
c = pd.Categorical(["foo"] * len(dti))
expected = DataFrame(
{"A": c.copy(), "B": c.copy(), "C": c.copy(), "D": c.copy()},
columns=pd.Index(list("ABCD"), name="minor"),
index=dti.rename("major"),
)
tm.assert_frame_equal(result, expected)