Skip to content

ENH: Rolling rank #43338

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 18 commits into from
Sep 14, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 27 additions & 0 deletions asv_bench/benchmarks/rolling.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,6 +180,33 @@ def time_quantile(self, constructor, window, dtype, percentile, interpolation):
self.roll.quantile(percentile, interpolation=interpolation)


class Rank:
params = (
["DataFrame", "Series"],
[10, 1000],
["int", "float"],
[True, False],
[True, False],
["min", "max", "average"],
)
param_names = [
"constructor",
"window",
"dtype",
"percentile",
"ascending",
"method",
]

def setup(self, constructor, window, dtype, percentile, ascending, method):
N = 10 ** 5
arr = np.random.random(N).astype(dtype)
self.roll = getattr(pd, constructor)(arr).rolling(window)

def time_rank(self, constructor, window, dtype, percentile, ascending, method):
self.roll.rank(pct=percentile, ascending=ascending, method=method)


class PeakMemFixedWindowMinMax:

params = ["min", "max"]
Expand Down
2 changes: 2 additions & 0 deletions doc/source/reference/window.rst
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ Rolling window functions
Rolling.aggregate
Rolling.quantile
Rolling.sem
Rolling.rank

.. _api.functions_window:

Expand Down Expand Up @@ -75,6 +76,7 @@ Expanding window functions
Expanding.aggregate
Expanding.quantile
Expanding.sem
Expanding.rank

.. _api.functions_ewm:

Expand Down
15 changes: 15 additions & 0 deletions doc/source/whatsnew/v1.4.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -94,6 +94,21 @@ Multithreaded CSV reading with a new CSV Engine based on pyarrow
:func:`pandas.read_csv` now accepts ``engine="pyarrow"`` (requires at least ``pyarrow`` 0.17.0) as an argument, allowing for faster csv parsing on multicore machines
with pyarrow installed. See the :doc:`I/O docs </user_guide/io>` for more info. (:issue:`23697`)

.. _whatsnew_140.enhancements.window_rank:

Rank function for rolling and expanding windows
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Added ``rank`` function to :class:`Rolling` and :class:`Expanding`. The new function supports the ``method``, ``ascending``, and ``pct`` flags of :meth:`DataFrame.rank`. The ``method`` argument supports ``min``, ``max``, and ``average`` ranking methods.
Example:

.. ipython:: python

s = pd.Series([1, 4, 2, 3, 5, 3])
s.rolling(3).rank()

s.rolling(3).rank(method="max")

.. _whatsnew_140.enhancements.other:

Other enhancements
Expand Down
8 changes: 8 additions & 0 deletions pandas/_libs/algos.pxd
Original file line number Diff line number Diff line change
Expand Up @@ -2,3 +2,11 @@ from pandas._libs.util cimport numeric


cdef numeric kth_smallest_c(numeric* arr, Py_ssize_t k, Py_ssize_t n) nogil

cdef enum TiebreakEnumType:
TIEBREAK_AVERAGE
TIEBREAK_MIN,
TIEBREAK_MAX
TIEBREAK_FIRST
TIEBREAK_FIRST_DESCENDING
TIEBREAK_DENSE
7 changes: 0 additions & 7 deletions pandas/_libs/algos.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -66,13 +66,6 @@ cdef:
float64_t NaN = <float64_t>np.NaN
int64_t NPY_NAT = get_nat()

cdef enum TiebreakEnumType:
TIEBREAK_AVERAGE
TIEBREAK_MIN,
TIEBREAK_MAX
TIEBREAK_FIRST
TIEBREAK_FIRST_DESCENDING
TIEBREAK_DENSE

tiebreakers = {
"average": TIEBREAK_AVERAGE,
Expand Down
25 changes: 23 additions & 2 deletions pandas/_libs/src/skiplist.h
Original file line number Diff line number Diff line change
Expand Up @@ -180,10 +180,30 @@ PANDAS_INLINE double skiplist_get(skiplist_t *skp, int i, int *ret) {
return node->value;
}

// Returns the lowest rank of all elements with value `value`, as opposed to the
// highest rank returned by `skiplist_insert`.
PANDAS_INLINE int skiplist_min_rank(skiplist_t *skp, double value) {
node_t *node;
int level, rank = 0;

node = skp->head;
for (level = skp->maxlevels - 1; level >= 0; --level) {
while (_node_cmp(node->next[level], value) > 0) {
rank += node->width[level];
node = node->next[level];
}
}

return rank + 1;
}

// Returns the rank of the inserted element. When there are duplicates,
// `rank` is the highest of the group, i.e. the 'max' method of
// https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rank.html
PANDAS_INLINE int skiplist_insert(skiplist_t *skp, double value) {
node_t *node, *prevnode, *newnode, *next_at_level;
int *steps_at_level;
int size, steps, level;
int size, steps, level, rank = 0;
node_t **chain;

chain = skp->tmp_chain;
Expand All @@ -197,6 +217,7 @@ PANDAS_INLINE int skiplist_insert(skiplist_t *skp, double value) {
next_at_level = node->next[level];
while (_node_cmp(next_at_level, value) >= 0) {
steps_at_level[level] += node->width[level];
rank += node->width[level];
node = next_at_level;
next_at_level = node->next[level];
}
Expand Down Expand Up @@ -230,7 +251,7 @@ PANDAS_INLINE int skiplist_insert(skiplist_t *skp, double value) {

++(skp->size);

return 1;
return rank + 1;
}

PANDAS_INLINE int skiplist_remove(skiplist_t *skp, double value) {
Expand Down
11 changes: 11 additions & 0 deletions pandas/_libs/window/aggregations.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@ from typing import (

import numpy as np

from pandas._typing import WindowingRankType

def roll_sum(
values: np.ndarray, # const float64_t[:]
start: np.ndarray, # np.ndarray[np.int64]
Expand Down Expand Up @@ -63,6 +65,15 @@ def roll_quantile(
quantile: float, # float64_t
interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
) -> np.ndarray: ... # np.ndarray[float]
def roll_rank(
values: np.ndarray,
start: np.ndarray,
end: np.ndarray,
minp: int,
percentile: bool,
method: WindowingRankType,
ascending: bool,
) -> np.ndarray: ... # np.ndarray[float]
def roll_apply(
obj: object,
start: np.ndarray, # np.ndarray[np.int64]
Expand Down
124 changes: 122 additions & 2 deletions pandas/_libs/window/aggregations.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@ import cython
from libc.math cimport round
from libcpp.deque cimport deque

from pandas._libs.algos cimport TiebreakEnumType

import numpy as np

cimport numpy as cnp
Expand Down Expand Up @@ -50,6 +52,8 @@ cdef extern from "../src/skiplist.h":
double skiplist_get(skiplist_t*, int, int*) nogil
int skiplist_insert(skiplist_t*, double) nogil
int skiplist_remove(skiplist_t*, double) nogil
int skiplist_rank(skiplist_t*, double) nogil
int skiplist_min_rank(skiplist_t*, double) nogil

cdef:
float32_t MINfloat32 = np.NINF
Expand Down Expand Up @@ -795,7 +799,7 @@ def roll_median_c(const float64_t[:] values, ndarray[int64_t] start,
val = values[j]
if notnan(val):
nobs += 1
err = skiplist_insert(sl, val) != 1
err = skiplist_insert(sl, val) == -1
if err:
break

Expand All @@ -806,7 +810,7 @@ def roll_median_c(const float64_t[:] values, ndarray[int64_t] start,
val = values[j]
if notnan(val):
nobs += 1
err = skiplist_insert(sl, val) != 1
err = skiplist_insert(sl, val) == -1
if err:
break

Expand Down Expand Up @@ -1139,6 +1143,122 @@ def roll_quantile(const float64_t[:] values, ndarray[int64_t] start,
return output


rolling_rank_tiebreakers = {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

possible to unify these with the same in algos.pyx?

"average": TiebreakEnumType.TIEBREAK_AVERAGE,
"min": TiebreakEnumType.TIEBREAK_MIN,
"max": TiebreakEnumType.TIEBREAK_MAX,
}


def roll_rank(const float64_t[:] values, ndarray[int64_t] start,
ndarray[int64_t] end, int64_t minp, bint percentile,
str method, bint ascending) -> np.ndarray:
"""
O(N log(window)) implementation using skip list

derived from roll_quantile
"""
cdef:
Py_ssize_t i, j, s, e, N = len(values), idx
float64_t rank_min = 0, rank = 0
int64_t nobs = 0, win
float64_t val
skiplist_t *skiplist
float64_t[::1] output
TiebreakEnumType rank_type

try:
rank_type = rolling_rank_tiebreakers[method]
except KeyError:
raise ValueError(f"Method '{method}' is not supported")

is_monotonic_increasing_bounds = is_monotonic_increasing_start_end_bounds(
start, end
)
# we use the Fixed/Variable Indexer here as the
# actual skiplist ops outweigh any window computation costs
output = np.empty(N, dtype=np.float64)

win = (end - start).max()
if win == 0:
output[:] = NaN
return np.asarray(output)
skiplist = skiplist_init(<int>win)
if skiplist == NULL:
raise MemoryError("skiplist_init failed")

with nogil:
for i in range(N):
s = start[i]
e = end[i]

if i == 0 or not is_monotonic_increasing_bounds:
if not is_monotonic_increasing_bounds:
nobs = 0
skiplist_destroy(skiplist)
skiplist = skiplist_init(<int>win)

# setup
for j in range(s, e):
val = values[j] if ascending else -values[j]
if notnan(val):
nobs += 1
rank = skiplist_insert(skiplist, val)
if rank == -1:
raise MemoryError("skiplist_insert failed")
if rank_type == TiebreakEnumType.TIEBREAK_AVERAGE:
# The average rank of `val` is the sum of the ranks of all
# instances of `val` in the skip list divided by the number
# of instances. The sum of consecutive integers from 1 to N
# is N * (N + 1) / 2.
# The sum of the ranks is the sum of integers from the
# lowest rank to the highest rank, which is the sum of
# integers from 1 to the highest rank minus the sum of
# integers from 1 to one less than the lowest rank.
rank_min = skiplist_min_rank(skiplist, val)
rank = (((rank * (rank + 1) / 2)
- ((rank_min - 1) * rank_min / 2))
/ (rank - rank_min + 1))
elif rank_type == TiebreakEnumType.TIEBREAK_MIN:
rank = skiplist_min_rank(skiplist, val)
else:
rank = NaN

else:
# calculate deletes
for j in range(start[i - 1], s):
val = values[j] if ascending else -values[j]
if notnan(val):
skiplist_remove(skiplist, val)
nobs -= 1

# calculate adds
for j in range(end[i - 1], e):
val = values[j] if ascending else -values[j]
if notnan(val):
nobs += 1
rank = skiplist_insert(skiplist, val)
if rank == -1:
raise MemoryError("skiplist_insert failed")
if rank_type == TiebreakEnumType.TIEBREAK_AVERAGE:
rank_min = skiplist_min_rank(skiplist, val)
rank = (((rank * (rank + 1) / 2)
- ((rank_min - 1) * rank_min / 2))
/ (rank - rank_min + 1))
elif rank_type == TiebreakEnumType.TIEBREAK_MIN:
rank = skiplist_min_rank(skiplist, val)
else:
rank = NaN
if nobs >= minp:
output[i] = rank / nobs if percentile else rank
else:
output[i] = NaN

skiplist_destroy(skiplist)

return np.asarray(output)


def roll_apply(object obj,
ndarray[int64_t] start, ndarray[int64_t] end,
int64_t minp,
Expand Down
3 changes: 3 additions & 0 deletions pandas/_typing.py
Original file line number Diff line number Diff line change
Expand Up @@ -219,3 +219,6 @@
PositionalIndexer = Union[ScalarIndexer, SequenceIndexer]
PositionalIndexerTuple = Tuple[PositionalIndexer, PositionalIndexer]
PositionalIndexer2D = Union[PositionalIndexer, PositionalIndexerTuple]

# Windowing rank methods
WindowingRankType = Literal["average", "min", "max"]
Loading