Skip to content

Backport PR #43854 on branch 1.3.x (REGR: RollingGroupby.corr producing incorrect results) #43859

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions doc/source/whatsnew/v1.3.4.rst
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,8 @@ Fixed regressions
- Fixed regression in :meth:`pandas.read_csv` raising ``UnicodeDecodeError`` exception when ``memory_map=True`` (:issue:`43540`)
- Fixed regression in :meth:`DataFrame.explode` raising ``AssertionError`` when ``column`` is any scalar which is not a string (:issue:`43314`)
- Fixed regression in :meth:`Series.aggregate` attempting to pass ``args`` and ``kwargs`` multiple times to the user supplied ``func`` in certain cases (:issue:`43357`)
- Fixed regression when iterating over a :class:`DataFrame.groupby.rolling` object causing the resulting DataFrames to have an incorrect index if the input groupings were not sorted (:issue:`43386`)
- Fixed regression in :meth:`DataFrame.groupby.rolling.cov` and :meth:`DataFrame.groupby.rolling.corr` computing incorrect results if the input groupings were not sorted (:issue:`43386`)

.. ---------------------------------------------------------------------------

Expand Down
5 changes: 3 additions & 2 deletions pandas/core/window/rolling.py
Original file line number Diff line number Diff line change
Expand Up @@ -290,8 +290,8 @@ def __repr__(self) -> str:
return f"{type(self).__name__} [{attrs}]"

def __iter__(self):
obj = self._create_data(self._selected_obj)
obj = obj.set_axis(self._on)
obj = self._selected_obj.set_axis(self._on)
obj = self._create_data(obj)
indexer = self._get_window_indexer()

start, end = indexer.get_window_bounds(
Expand Down Expand Up @@ -649,6 +649,7 @@ def _apply_pairwise(
"""
# Manually drop the grouping column first
target = target.drop(columns=self._grouper.names, errors="ignore")
target = self._create_data(target)
result = super()._apply_pairwise(target, other, pairwise, func)
# 1) Determine the levels + codes of the groupby levels
if other is not None:
Expand Down
36 changes: 36 additions & 0 deletions pandas/tests/window/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -146,6 +146,42 @@ def func(x):
expected = g.apply(func)
tm.assert_series_equal(result, expected)

@pytest.mark.parametrize(
"func, expected_values",
[("cov", [[1.0, 1.0], [1.0, 4.0]]), ("corr", [[1.0, 0.5], [0.5, 1.0]])],
)
def test_rolling_corr_cov_unordered(self, func, expected_values):
# GH 43386
df = DataFrame(
{
"a": ["g1", "g2", "g1", "g1"],
"b": [0, 0, 1, 2],
"c": [2, 0, 6, 4],
}
)
rol = df.groupby("a").rolling(3)
result = getattr(rol, func)()
expected = DataFrame(
{
"b": 4 * [np.nan] + expected_values[0] + 2 * [np.nan],
"c": 4 * [np.nan] + expected_values[1] + 2 * [np.nan],
},
index=MultiIndex.from_tuples(
[
("g1", 0, "b"),
("g1", 0, "c"),
("g1", 2, "b"),
("g1", 2, "c"),
("g1", 3, "b"),
("g1", 3, "c"),
("g2", 1, "b"),
("g2", 1, "c"),
],
names=["a", None, None],
),
)
tm.assert_frame_equal(result, expected)

def test_rolling_apply(self, raw):
g = self.frame.groupby("A")
r = g.rolling(window=4)
Expand Down
9 changes: 9 additions & 0 deletions pandas/tests/window/test_rolling.py
Original file line number Diff line number Diff line change
Expand Up @@ -792,6 +792,15 @@ def test_iter_rolling_on_dataframe(expected, window):
tm.assert_frame_equal(actual, expected)


def test_iter_rolling_on_dataframe_unordered():
# GH 43386
df = DataFrame({"a": ["x", "y", "x"], "b": [0, 1, 2]})
results = list(df.groupby("a").rolling(2))
expecteds = [df.iloc[idx, [1]] for idx in [[0], [0, 2], [1]]]
for result, expected in zip(results, expecteds):
tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize(
"ser,expected,window, min_periods",
[
Expand Down