Skip to content

PERF: Slow performance of to_dict (#46470) #46487

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.5.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -453,6 +453,7 @@ Performance improvements
- Performance improvement when setting values in a pyarrow backed string array (:issue:`46400`)
- Performance improvement in :func:`factorize` (:issue:`46109`)
- Performance improvement in :class:`DataFrame` and :class:`Series` constructors for extension dtype scalars (:issue:`45854`)
- Performance improvement in :meth:`DataFrame.to_dict` and :meth:`Series.to_dict` especially when using non-mixed dtypes (:issue:`46470`)

.. ---------------------------------------------------------------------------
.. _whatsnew_150.bug_fixes:
Expand Down
130 changes: 104 additions & 26 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -1909,41 +1909,73 @@ def to_dict(self, orient: str = "dict", into=dict):
elif orient.startswith("i"):
orient = "index"

object_dtype_cols = {
col for col, dtype in self.dtypes.items() if is_object_dtype(dtype)
}
are_all_object_dtype_cols = len(object_dtype_cols) == len(self.dtypes)
if orient == "dict":
return into_c((k, v.to_dict(into)) for k, v in self.items())

elif orient == "list":
return into_c(
(k, list(map(maybe_box_native, v.tolist()))) for k, v in self.items()
(
k,
list(map(maybe_box_native, v.tolist()))
if k in object_dtype_cols
else v.tolist(),
)
for k, v in self.items()
)

elif orient == "split":
if are_all_object_dtype_cols:
data = [
list(map(maybe_box_native, t))
for t in self.itertuples(index=False, name=None)
]
elif object_dtype_cols:
# A number of ways were tried here, this solution proved to be the
# most optimal in general
data = [list(t) for t in self.itertuples(index=False, name=None)]
object_type_indices = [
i for i, col in enumerate(self.columns) if col in object_dtype_cols
]
for row in data:
for i in object_type_indices:
row[i] = maybe_box_native(row[i])
else:
data = [list(t) for t in self.itertuples(index=False, name=None)]
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you share code between any of these cases? e.g. make a helper function

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@jreback done

return into_c(
(
("index", self.index.tolist()),
("columns", self.columns.tolist()),
(
"data",
[
list(map(maybe_box_native, t))
for t in self.itertuples(index=False, name=None)
],
),
("data", data),
)
)

elif orient == "tight":
if are_all_object_dtype_cols:
data = [
list(map(maybe_box_native, t))
for t in self.itertuples(index=False, name=None)
]
elif object_dtype_cols:
# A number of ways were tried here, this solution proved to be the
# most optimal in general
data = [list(t) for t in self.itertuples(index=False, name=None)]
object_type_indices = [
i for i, col in enumerate(self.columns) if col in object_dtype_cols
]
for row in data:
for i in object_type_indices:
row[i] = maybe_box_native(row[i])
else:
data = [list(t) for t in self.itertuples(index=False, name=None)]
return into_c(
(
("index", self.index.tolist()),
("columns", self.columns.tolist()),
(
"data",
[
list(map(maybe_box_native, t))
for t in self.itertuples(index=False, name=None)
],
),
("data", data),
("index_names", list(self.index.names)),
("column_names", list(self.columns.names)),
)
Expand All @@ -1954,21 +1986,67 @@ def to_dict(self, orient: str = "dict", into=dict):

elif orient == "records":
columns = self.columns.tolist()
rows = (
dict(zip(columns, row))
for row in self.itertuples(index=False, name=None)
)
return [
into_c((k, maybe_box_native(v)) for k, v in row.items()) for row in rows
]
if are_all_object_dtype_cols:
rows = (
dict(zip(columns, row))
for row in self.itertuples(index=False, name=None)
)
return [
into_c((k, maybe_box_native(v)) for k, v in row.items())
for row in rows
]
elif object_dtype_cols:
is_object_dtype_by_index = [col in object_dtype_cols for col in columns]
return [
into_c(
zip(
columns,
[
maybe_box_native(v)
if is_object_dtype_by_index[i]
else v
for i, v in enumerate(t)
],
)
)
for t in self.itertuples(index=False, name=None)
]
else:
return [
into_c(zip(columns, t))
for t in self.itertuples(index=False, name=None)
]

elif orient == "index":
if not self.index.is_unique:
raise ValueError("DataFrame index must be unique for orient='index'.")
return into_c(
(t[0], dict(zip(self.columns, map(maybe_box_native, t[1:]))))
for t in self.itertuples(name=None)
)
columns = self.columns.tolist()
if are_all_object_dtype_cols:
return into_c(
(t[0], dict(zip(self.columns, map(maybe_box_native, t[1:]))))
for t in self.itertuples(name=None)
)
elif object_dtype_cols:
is_object_dtype_by_index = [
col in object_dtype_cols for col in self.columns
]
return into_c(
(
t[0],
{
columns[i]: maybe_box_native(v)
if is_object_dtype_by_index[i]
else v
for i, v in enumerate(t[1:])
},
)
for t in self.itertuples(name=None)
)
else:
return into_c(
(t[0], dict(zip(self.columns, t[1:])))
for t in self.itertuples(name=None)
)

else:
raise ValueError(f"orient '{orient}' not understood")
Expand Down
8 changes: 7 additions & 1 deletion pandas/core/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -1771,7 +1771,13 @@ def to_dict(self, into=dict):
"""
# GH16122
into_c = com.standardize_mapping(into)
return into_c((k, maybe_box_native(v)) for k, v in self.items())

if is_object_dtype(self):
return into_c((k, maybe_box_native(v)) for k, v in self.items())
else:
# Not an object dtype => all types will be the same so let the default
# indexer return native python type
return into_c((k, v) for k, v in self.items())

def to_frame(self, name: Hashable = lib.no_default) -> DataFrame:
"""
Expand Down
10 changes: 10 additions & 0 deletions pandas/tests/frame/methods/test_to_dict.py
Original file line number Diff line number Diff line change
Expand Up @@ -380,6 +380,16 @@ def test_to_dict_orient_tight(self, index, columns):
"b": [float, float, float],
},
),
( # Make sure we have one df which is all object type cols
{
"a": [1, "hello", 3],
"b": [1.1, "world", 3.3],
},
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this hits all of the new added code?

{
"a": [int, str, int],
"b": [float, str, float],
},
),
),
)
def test_to_dict_returns_native_types(self, orient, data, expected_types):
Expand Down