Skip to content

REGR: groupby fails with nullable dtypes and dropna=False #48824

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Oct 4, 2022
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.5.1.rst
Original file line number Diff line number Diff line change
Expand Up @@ -78,6 +78,7 @@ Fixed regressions
- Fixed regression causing an ``AttributeError`` during warning emitted if the provided table name in :meth:`DataFrame.to_sql` and the table name actually used in the database do not match (:issue:`48733`)
- Fixed :meth:`.DataFrameGroupBy.size` not returning a Series when ``axis=1`` (:issue:`48738`)
- Fixed Regression in :meth:`DataFrameGroupBy.apply` when user defined function is called on an empty dataframe (:issue:`47985`)
- Fixed regression in :meth:`Series.groupby` and :meth:`DataFrame.groupby` when the grouper is a nullable data type (e.g. :class:`Int64`) or a PyArrow-backed string array, contains null values, and ``dropna=False`` (:issue:`48794`)

.. ---------------------------------------------------------------------------

Expand Down
4 changes: 2 additions & 2 deletions pandas/core/arrays/arrow/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -619,8 +619,8 @@ def factorize(
na_mask = indices.values == -1
na_index = na_mask.argmax()
if na_mask[na_index]:
uniques = uniques.insert(na_index, self.dtype.na_value)
na_code = 0 if na_index == 0 else indices[:na_index].argmax() + 1
na_code = 0 if na_index == 0 else indices[:na_index].max() + 1
uniques = uniques.insert(na_code, self.dtype.na_value)
indices[indices >= na_code] += 1
indices[indices == -1] = na_code
else:
Expand Down
2 changes: 1 addition & 1 deletion pandas/core/arrays/masked.py
Original file line number Diff line number Diff line change
Expand Up @@ -913,7 +913,7 @@ def factorize(
else:
# mypy error: Slice index must be an integer or None
# https://github.com/python/mypy/issues/2410
na_code = codes[:na_index].argmax() + 1 # type: ignore[misc]
na_code = codes[:na_index].max() + 1 # type: ignore[misc]
codes[codes >= na_code] += 1
codes[codes == -1] = na_code
# dummy value for uniques; not used since uniques_mask will be True
Expand Down
113 changes: 62 additions & 51 deletions pandas/tests/groupby/test_groupby_dropna.py
Original file line number Diff line number Diff line change
Expand Up @@ -393,75 +393,86 @@ def test_groupby_drop_nan_with_multi_index():
tm.assert_frame_equal(result, expected)


# Test all combinations of values e.g. 1, 2, and NA. Use string labels to
# correspond to various dtypes. "z" always corresponds to NA.
@pytest.mark.parametrize("sequence0", ["x", "y", "z"])
@pytest.mark.parametrize("sequence1", ["x", "y", "z"])
@pytest.mark.parametrize("sequence2", ["x", "y", "z"])
@pytest.mark.parametrize("sequence3", ["x", "y", "z"])
@pytest.mark.parametrize(
"values, dtype",
"uniques, dtype",
[
([2, np.nan, 1, 2], None),
([2, np.nan, 1, 2], "UInt8"),
([2, np.nan, 1, 2], "Int8"),
([2, np.nan, 1, 2], "UInt16"),
([2, np.nan, 1, 2], "Int16"),
([2, np.nan, 1, 2], "UInt32"),
([2, np.nan, 1, 2], "Int32"),
([2, np.nan, 1, 2], "UInt64"),
([2, np.nan, 1, 2], "Int64"),
([2, np.nan, 1, 2], "Float32"),
([2, np.nan, 1, 2], "Int64"),
([2, np.nan, 1, 2], "Float64"),
({"x": 1, "y": 2, "z": np.nan}, None),
({"x": 1, "y": 2, "z": pd.NA}, "UInt8"),
({"x": 1, "y": 2, "z": pd.NA}, "Int8"),
({"x": 1, "y": 2, "z": pd.NA}, "UInt16"),
({"x": 1, "y": 2, "z": pd.NA}, "Int16"),
({"x": 1, "y": 2, "z": pd.NA}, "UInt32"),
({"x": 1, "y": 2, "z": pd.NA}, "Int32"),
({"x": 1, "y": 2, "z": pd.NA}, "UInt64"),
({"x": 1, "y": 2, "z": pd.NA}, "Int64"),
({"x": 1, "y": 2, "z": pd.NA}, "Float32"),
({"x": 1, "y": 2, "z": pd.NA}, "Int64"),
({"x": 1, "y": 2, "z": pd.NA}, "Float64"),
({"x": "x", "y": "y", "z": None}, "category"),
({"x": "x", "y": "y", "z": pd.NA}, "string"),
pytest.param(
["y", None, "x", "y"],
"category",
marks=pytest.mark.xfail(
reason="dropna=False not correct for categorical, GH#48645"
),
),
(["y", pd.NA, "x", "y"], "string"),
pytest.param(
["y", pd.NA, "x", "y"],
{"x": "x", "y": "y", "z": pd.NA},
"string[pyarrow]",
marks=pytest.mark.skipif(
pa_version_under1p01, reason="pyarrow is not installed"
),
),
(
["2016-01-01", np.datetime64("NaT"), "2017-01-01", "2016-01-01"],
{"x": "2016-01-01", "y": "2017-01-01", "z": np.datetime64("NaT")},
"datetime64[ns]",
),
(
[
pd.Period("2012-02-01", freq="D"),
pd.NaT,
pd.Period("2012-01-01", freq="D"),
pd.Period("2012-02-01", freq="D"),
],
{
"x": pd.Period("2012-01-01", freq="D"),
"y": pd.Period("2012-02-01", freq="D"),
"z": pd.NaT,
},
None,
),
(pd.arrays.SparseArray([2, np.nan, 1, 2]), None),
],
)
@pytest.mark.parametrize("test_series", [True, False])
def test_no_sort_keep_na(values, dtype, test_series):
# GH#46584
key = pd.Series(values, dtype=dtype)
df = pd.DataFrame({"key": key, "a": [1, 2, 3, 4]})
def test_no_sort_keep_na(
request, sequence0, sequence1, sequence2, sequence3, uniques, dtype
):
# GH#46584, GH#48794
sequence = "".join([sequence0, sequence1, sequence2, sequence3])
if dtype == "category" and "z" in sequence:
# Only xfail when nulls are present
msg = "dropna=False not correct for categorical, GH#48645"
request.node.add_marker(pytest.mark.xfail(reason=msg))
if dtype == "datetime64[ns]" and sequence == "zzzz":
msg = "Cannot construct datetime of all nulls"
request.node.add_marker(pytest.mark.xfail(reason=msg))
weights = {"x": 1, "y": 2, "z": 3}

key = pd.Series([uniques[label] for label in sequence], dtype=dtype)
df = pd.DataFrame({"key": key, "a": [weights[label] for label in sequence]})
gb = df.groupby("key", dropna=False, sort=False)
if test_series:
gb = gb["a"]

warn = None
if isinstance(values, pd.arrays.SparseArray):
warn = FutureWarning
msg = "passing a SparseArray to pd.Index will store that array directly"
with tm.assert_produces_warning(warn, match=msg):
result = gb.sum()
expected = pd.DataFrame({"a": [5, 2, 3]}, index=key[:-1].rename("key"))

if test_series:
expected = expected["a"]
if expected.index.is_categorical():
# TODO: Slicing reorders categories?
expected.index = expected.index.reorder_categories(["y", "x"])
tm.assert_equal(result, expected)
result = gb.sum()
# Manually compute the groupby sum, use the labels "x", "y", and "z" to avoid
# issues with hashing np.nan
summed = {}
for label in sequence:
summed[label] = summed.get(label, 0) + weights[label]

if dtype == "category":
index = pd.CategoricalIndex(
[uniques[label] for label in summed],
# Get the nonnull categories in the order they appear ignoring duplicates
list({uniques[k]: 0 for k in sequence if not pd.isnull(uniques[k])}),
name="key",
)
else:
index = pd.Index([uniques[label] for label in summed], dtype=dtype, name="key")
expected = pd.Series(summed.values(), index=index, name="a", dtype=None).to_frame()
tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize("test_series", [True, False])
Expand Down