Skip to content

New feature: Read first n_rows of Parquet File #51831

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 2 commits into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
64 changes: 47 additions & 17 deletions pandas/io/parquet.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
DataFrame,
MultiIndex,
arrays,
concat,
get_option,
)
from pandas.core.shared_docs import _shared_docs
Expand Down Expand Up @@ -218,8 +219,9 @@ def write(

def read(
self,
path,
path: FilePath,
columns=None,
n_rows: int = None,
use_nullable_dtypes: bool = False,
storage_options: StorageOptions = None,
**kwargs,
Expand All @@ -246,22 +248,40 @@ def read(
mode="rb",
)
try:
pa_table = self.api.parquet.read_table(
path_or_handle, columns=columns, **kwargs
)
if dtype_backend == "pandas":
result = pa_table.to_pandas(**to_pandas_kwargs)
elif dtype_backend == "pyarrow":
result = DataFrame(
{
col_name: arrays.ArrowExtensionArray(pa_col)
for col_name, pa_col in zip(
pa_table.column_names, pa_table.itercolumns()
)
}
if not n_rows:
pa_table = self.api.parquet.read_table(
path_or_handle, columns=columns, **kwargs
)
if manager == "array":
result = result._as_manager("array", copy=False)
if dtype_backend == "pandas":
result = pa_table.to_pandas(**to_pandas_kwargs)
elif dtype_backend == "pyarrow":
result = DataFrame(
{
col_name: arrays.ArrowExtensionArray(pa_col)
for col_name, pa_col in zip(
pa_table.column_names, pa_table.itercolumns()
)
}
)
if manager == "array":
result = result._as_manager("array", copy=False)
else:
batch_size = 65536
counter = 0
batches = []
if n_rows < batch_size:
batch_size = n_rows
for batch in self.api.parquet.ParquetFile(source=path).iter_batches(
batch_size=batch_size,
columns=columns,
use_pandas_metadata=kwargs["use_pandas_metadata"],
):
batches.append(batch.to_pandas(**to_pandas_kwargs))
counter += batch_size
if counter >= n_rows:
break
result = concat(batches)

return result
finally:
if handles is not None:
Expand Down Expand Up @@ -325,7 +345,12 @@ def write(
)

def read(
self, path, columns=None, storage_options: StorageOptions = None, **kwargs
self,
path,
columns=None,
n_rows: int = None,
storage_options: StorageOptions = None,
**kwargs,
) -> DataFrame:
parquet_kwargs: dict[str, Any] = {}
use_nullable_dtypes = kwargs.pop("use_nullable_dtypes", False)
Expand Down Expand Up @@ -361,6 +386,11 @@ def read(

try:
parquet_file = self.api.ParquetFile(path, **parquet_kwargs)
if n_rows:
return parquet_file.head(
n_rows=n_rows, columns=columns, **kwargs
) # Only for convenience and to mirror PyArrow impl
# Whole table is still loaded first
return parquet_file.to_pandas(columns=columns, **kwargs)
finally:
if handles is not None:
Expand Down