Skip to content

BUG: agg with dictlike and non-unique col will return wrong type #52115

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 18 commits into from
Apr 11, 2023
Merged
Show file tree
Hide file tree
Changes from 16 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.0.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1372,6 +1372,7 @@ Reshaping
- Bug in :meth:`DataFrame.explode` raising ``ValueError`` on multiple columns with ``NaN`` values or empty lists (:issue:`46084`)
- Bug in :meth:`DataFrame.transpose` with ``IntervalDtype`` column with ``timedelta64[ns]`` endpoints (:issue:`44917`)
- Bug in :meth:`DataFrame.agg` and :meth:`Series.agg` would ignore arguments when passed a list of functions (:issue:`50863`)
- Bug in :meth:`DataFrame.agg` and :meth:`Series.agg` on non-unique columns would return incorrect type when dist-like argument passed in (:issue:`51099`)

Sparse
^^^^^^
Expand Down
50 changes: 38 additions & 12 deletions pandas/core/apply.py
Original file line number Diff line number Diff line change
Expand Up @@ -412,29 +412,55 @@ def agg_dict_like(self) -> DataFrame | Series:
context_manager = com.temp_setattr(obj, "as_index", True)
else:
context_manager = nullcontext()

is_non_unique_col = (
selected_obj.ndim == 2
and selected_obj.columns.nunique() < len(selected_obj.columns)
)

with context_manager:
if selected_obj.ndim == 1:
# key only used for output
colg = obj._gotitem(selection, ndim=1)
results = {key: colg.agg(how) for key, how in arg.items()}
result_data = [colg.agg(how) for _, how in arg.items()]
result_index = list(arg.keys())
elif is_non_unique_col:
# key used for column selection and output
# GH#51099
result_data = []
result_index = []
for key, how in arg.items():
indices = selected_obj.columns.get_indexer_for([key])
labels = selected_obj.columns.take(indices)
label_to_indices = defaultdict(list)
for index, label in zip(indices, labels):
label_to_indices[label].append(index)

key_data = [
selected_obj._ixs(indice, axis=1).agg(how)
for label, indices in label_to_indices.items()
for indice in indices
]

result_index += [key] * len(key_data)
result_data += key_data
else:
# key used for column selection and output
results = {
key: obj._gotitem(key, ndim=1).agg(how) for key, how in arg.items()
}

# set the final keys
keys = list(arg.keys())
result_data = [
obj._gotitem(key, ndim=1).agg(how) for key, how in arg.items()
]
result_index = list(arg.keys())

# Avoid making two isinstance calls in all and any below
is_ndframe = [isinstance(r, ABCNDFrame) for r in results.values()]
is_ndframe = [isinstance(r, ABCNDFrame) for r in result_data]

# combine results
if all(is_ndframe):
results = dict(zip(result_index, result_data))
keys_to_use: Iterable[Hashable]
keys_to_use = [k for k in keys if not results[k].empty]
keys_to_use = [k for k in result_index if not results[k].empty]
# Have to check, if at least one DataFrame is not empty.
keys_to_use = keys_to_use if keys_to_use != [] else keys
keys_to_use = keys_to_use if keys_to_use != [] else result_index
if selected_obj.ndim == 2:
# keys are columns, so we can preserve names
ktu = Index(keys_to_use)
Expand All @@ -457,15 +483,15 @@ def agg_dict_like(self) -> DataFrame | Series:
else:
from pandas import Series

# we have a dict of scalars
# we have a dict of scalars or a list of scalars
# GH 36212 use name only if obj is a series
if obj.ndim == 1:
obj = cast("Series", obj)
name = obj.name
else:
name = None

result = Series(results, name=name)
result = Series(result_data, index=result_index, name=name)

return result

Expand Down
12 changes: 12 additions & 0 deletions pandas/tests/apply/test_frame_apply.py
Original file line number Diff line number Diff line change
Expand Up @@ -1496,3 +1496,15 @@ def test_agg_std():
result = df.agg([np.std])
expected = DataFrame({"A": 2.0, "B": 2.0}, index=["std"])
tm.assert_frame_equal(result, expected)


def test_agg_dist_like_and_nonunique_columns():
# GH#51099
df = DataFrame(
{"A": [None, 2, 3], "B": [1.0, np.nan, 3.0], "C": ["foo", None, "bar"]}
)
df.columns = ["A", "A", "C"]

result = df.agg({"A": "count"})
expected = df["A"].count()
tm.assert_series_equal(result, expected)