Skip to content

Backport PR #57169 on branch 2.2.x (REGR: DataFrame.sort_index not producing stable sort) #57180

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.2.1.rst
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@ Fixed regressions
- Fixed regression in :func:`merge_ordered` raising ``TypeError`` for ``fill_method="ffill"`` and ``how="left"`` (:issue:`57010`)
- Fixed regression in :func:`wide_to_long` raising an ``AttributeError`` for string columns (:issue:`57066`)
- Fixed regression in :meth:`DataFrame.loc` raising ``IndexError`` for non-unique, masked dtype indexes where result has more than 10,000 rows (:issue:`57027`)
- Fixed regression in :meth:`DataFrame.sort_index` not producing a stable sort for a index with duplicates (:issue:`57151`)
- Fixed regression in :meth:`DataFrame.to_dict` with ``orient='list'`` and datetime or timedelta types returning integers (:issue:`54824`)
- Fixed regression in :meth:`DataFrameGroupBy.idxmin`, :meth:`DataFrameGroupBy.idxmax`, :meth:`SeriesGroupBy.idxmin`, :meth:`SeriesGroupBy.idxmax` ignoring the ``skipna`` argument (:issue:`57040`)
- Fixed regression in :meth:`DataFrameGroupBy.idxmin`, :meth:`DataFrameGroupBy.idxmax`, :meth:`SeriesGroupBy.idxmin`, :meth:`SeriesGroupBy.idxmax` where values containing the minimum or maximum value for the dtype could produce incorrect results (:issue:`57040`)
Expand Down
11 changes: 4 additions & 7 deletions pandas/core/indexes/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -5914,17 +5914,14 @@ def sort_values(
(Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2]))
"""
if key is None and (
self.is_monotonic_increasing or self.is_monotonic_decreasing
(ascending and self.is_monotonic_increasing)
or (not ascending and self.is_monotonic_decreasing)
):
reverse = ascending != self.is_monotonic_increasing
sorted_index = self[::-1] if reverse else self.copy()
if return_indexer:
indexer = np.arange(len(self), dtype=np.intp)
if reverse:
indexer = indexer[::-1]
return sorted_index, indexer
return self.copy(), indexer
else:
return sorted_index
return self.copy()

# GH 35584. Sort missing values according to na_position kwarg
# ignore na_position for MultiIndex
Expand Down
24 changes: 24 additions & 0 deletions pandas/tests/frame/methods/test_sort_index.py
Original file line number Diff line number Diff line change
Expand Up @@ -1002,3 +1002,27 @@ def test_axis_columns_ignore_index():
result = df.sort_index(axis="columns", ignore_index=True)
expected = DataFrame([[2, 1]])
tm.assert_frame_equal(result, expected)


def test_sort_index_stable_sort():
# GH 57151
df = DataFrame(
data=[
(Timestamp("2024-01-30 13:00:00"), 13.0),
(Timestamp("2024-01-30 13:00:00"), 13.1),
(Timestamp("2024-01-30 12:00:00"), 12.0),
(Timestamp("2024-01-30 12:00:00"), 12.1),
],
columns=["dt", "value"],
).set_index(["dt"])
result = df.sort_index(level="dt", kind="stable")
expected = DataFrame(
data=[
(Timestamp("2024-01-30 12:00:00"), 12.0),
(Timestamp("2024-01-30 12:00:00"), 12.1),
(Timestamp("2024-01-30 13:00:00"), 13.0),
(Timestamp("2024-01-30 13:00:00"), 13.1),
],
columns=["dt", "value"],
).set_index(["dt"])
tm.assert_frame_equal(result, expected)