Skip to content

Genextreme #84

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 15 commits into from
Sep 28, 2022
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 26 additions & 2 deletions pymc_experimental/distributions/__init__.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,26 @@
from pymc_experimental.distributions import histogram_utils
from pymc_experimental.distributions.histogram_utils import histogram_approximation
# Copyright 2022 The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# coding: utf-8
"""
Experimental probability distributions for stochastic nodes in PyMC.
"""

from pymc_experimental.distributions.continuous import (
GenExtreme,
)

__all__ = [
"GenExtreme",
]
236 changes: 236 additions & 0 deletions pymc_experimental/distributions/continuous.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,236 @@
# Copyright 2022 The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# coding: utf-8
"""
Experimental probability distributions for stochastic nodes in PyMC.

The imports from pymc are not fully replicated here: add imports as necessary.
"""

from typing import List, Tuple, Union
import aesara
import aesara.tensor as at
import numpy as np
from scipy import stats

from aesara.tensor.random.op import RandomVariable
from pymc.distributions.distribution import Continuous
from aesara.tensor.var import TensorVariable
from pymc.aesaraf import floatX
from pymc.distributions.dist_math import check_parameters
from pymc.distributions.shape_utils import rv_size_is_none


class GenExtremeRV(RandomVariable):
name: str = "Generalized Extreme Value"
ndim_supp: int = 0
ndims_params: List[int] = [0, 0, 0]
dtype: str = "floatX"
_print_name: Tuple[str, str] = ("Generalized Extreme Value", "\\operatorname{GEV}")

def __call__(
self, mu=0.0, sigma=1.0, xi=0.0, size=None, **kwargs
) -> TensorVariable:
return super().__call__(mu, sigma, xi, size=size, **kwargs)

@classmethod
def rng_fn(
cls,
rng: Union[np.random.RandomState, np.random.Generator],
mu: np.ndarray,
sigma: np.ndarray,
xi: np.ndarray,
size: Tuple[int, ...],
) -> np.ndarray:
# Notice negative here, since remainder of GenExtreme is based on Coles parametrization
return stats.genextreme.rvs(
c=-xi, loc=mu, scale=sigma, random_state=rng, size=size
)


gev = GenExtremeRV()


class GenExtreme(Continuous):
r"""
Univariate Generalized Extreme Value log-likelihood

The cdf of this distribution is

.. math::

G(x \mid \mu, \sigma, \xi) = \exp\left[ -\left(1 + \xi z\right)^{-\frac{1}{\xi}} \right]

where

.. math::

z = \frac{x - \mu}{\sigma}

and is defined on the set:

.. math::

\left\{x: 1 + \xi\left(\frac{x-\mu}{\sigma}\right) > 0 \right\}.

Note that this parametrization is per Coles (2001), and differs from that of
Scipy in the sign of the shape parameter, :math:`\xi`.

.. plot::

import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st
import arviz as az
plt.style.use('arviz-darkgrid')
x = np.linspace(-10, 20, 200)
mus = [0., 4., -1.]
sigmas = [2., 2., 4.]
xis = [-0.3, 0.0, 0.3]
for mu, sigma, xi in zip(mus, sigmas, xis):
pdf = st.genextreme.pdf(x, c=-xi, loc=mu, scale=sigma)
plt.plot(x, pdf, label=rf'$\mu$ = {mu}, $\sigma$ = {sigma}, $\xi$={xi}')
plt.xlabel('x', fontsize=12)
plt.ylabel('f(x)', fontsize=12)
plt.legend(loc=1)
plt.show()


======== =========================================================================
Support * :math:`x \in [\mu - \sigma/\xi, +\infty]`, when :math:`\xi > 0`
* :math:`x \in \mathbb{R}` when :math:`\xi = 0`
* :math:`x \in [-\infty, \mu - \sigma/\xi]`, when :math:`\xi < 0`
Mean * :math:`\mu + \sigma(g_1 - 1)/\xi`, when :math:`\xi \neq 0, \xi < 1`
* :math:`\mu + \sigma \gamma`, when :math:`\xi = 0`
* :math:`\infty`, when :math:`\xi \geq 1`
where :math:`\gamma` is the Euler-Mascheroni constant, and
:math:`g_k = \Gamma (1-k\xi)`
Variance * :math:`\sigma^2 (g_2 - g_1^2)/\xi^2`, when :math:`\xi \neq 0, \xi < 0.5`
* :math:`\frac{\pi^2}{6} \sigma^2`, when :math:`\xi = 0`
* :math:`\infty`, when :math:`\xi \geq 0.5`
======== =========================================================================

Parameters
----------
mu: float
Location parameter.
sigma: float
Scale parameter (sigma > 0).
xi: float
Shape parameter
scipy: bool
Whether or not to use the Scipy interpretation of the shape parameter
(defaults to `False`).

References
----------
.. [Coles2001] Coles, S.G. (2001).
An Introduction to the Statistical Modeling of Extreme Values
Springer-Verlag, London

"""

rv_op = gev

@classmethod
def dist(cls, mu=0, sigma=1, xi=0, scipy=False, **kwargs):
# If SciPy, use its parametrization, otherwise convert to standard
if scipy:
xi = -xi
mu = at.as_tensor_variable(floatX(mu))
sigma = at.as_tensor_variable(floatX(sigma))
xi = at.as_tensor_variable(floatX(xi))

return super().dist([mu, sigma, xi], **kwargs)

def logp(value, mu, sigma, xi):
"""
Calculate log-probability of Generalized Extreme Value distribution
at specified value.

Parameters
----------
value: numeric
Value(s) for which log-probability is calculated. If the log probabilities for multiple
values are desired the values must be provided in a numpy array or Aesara tensor

Returns
-------
TensorVariable
"""
scaled = (value - mu) / sigma

logp_expression = at.switch(
at.isclose(xi, 0),
-at.log(sigma) - scaled - at.exp(-scaled),
-at.log(sigma)
- ((xi + 1) / xi) * at.log1p(xi * scaled)
- at.pow(1 + xi * scaled, -1 / xi),
)

logp = at.switch(
at.gt(1 + xi * scaled, 0.0),
logp_expression,
-np.inf)

return check_parameters(
logp,
sigma > 0,
1 + xi * scaled > 0,
at.and_(xi > -1, xi < 1),
msg="sigma <= 0 or 1+xi*(x-mu)/sigma <= 0")

def logcdf(value, mu, sigma, xi):
"""
Compute the log of the cumulative distribution function for Generalized Extreme Value
distribution at the specified value.

Parameters
----------
value: numeric or np.ndarray or `TensorVariable`
Value(s) for which log CDF is calculated. If the log CDF for
multiple values are desired the values must be provided in a numpy
array or `TensorVariable`.

Returns
-------
TensorVariable
"""
scaled = (value - mu) / sigma
logc_expression = at.switch(
at.isclose(xi, 0), -at.exp(-scaled), -at.pow(1 + xi * scaled, -1 / xi)
)

logc = at.switch(
1 + xi * (value - mu) / sigma > 0,
logc_expression,
-np.inf)

return check_parameters(logc,
sigma > 0,
1 + xi * scaled > 0,
at.and_(xi > -1, xi < 1),
msg="sigma <= 0 or 1+xi*(x-mu)/sigma <= 0")

def moment(rv, size, mu, sigma, xi):
r"""
Using the mode, as the mean can be infinite when :math:`\xi > 1`
"""
mode = at.switch(
at.isclose(xi, 0), mu, mu + sigma * (at.pow(1 + xi, -xi) - 1) / xi
)
if not rv_size_is_none(size):
mode = at.full(size, mode)
return mode
2 changes: 2 additions & 0 deletions pymc_experimental/tests/distributions/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
from pymc_experimental.distributions import histogram_utils
from pymc_experimental.distributions.histogram_utils import histogram_approximation
119 changes: 119 additions & 0 deletions pymc_experimental/tests/distributions/test_continuous.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@

# Copyright 2020 The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# general imports
import numpy as np
import pytest
import scipy.stats as st
import scipy.stats.distributions as sp

import pymc as pm

# test support imports from pymc
from pymc.tests.distributions.util import (
BaseTestDistributionRandom,
R,
Rplus,
Domain,
check_logp,
check_logcdf,
assert_moment_is_expected,
seeded_scipy_distribution_builder,
)

# the distributions to be tested
from pymc_experimental.distributions import (
GenExtreme,
)

class TestGenExtremeClass:
"""
Wrapper class so that tests of experimental additions can be dropped into
PyMC directly on adoption.

pm.logp(GenExtreme.dist(mu=0.,sigma=1.,xi=0.5),value=-0.01)
"""

def test_genextreme(self):
check_logp(
GenExtreme,
R,
{"mu": R, "sigma": Rplus, "xi": Domain([-1, -0.99, -0.5, 0, 0.5, 0.99, 1])},
lambda value, mu, sigma, xi: sp.genextreme.logpdf(value, c=-xi, loc=mu, scale=sigma)
if 1 + xi*(value-mu)/sigma > 0 else -np.inf
)
check_logcdf(
GenExtreme,
R,
{"mu": R, "sigma": Rplus, "xi": Domain([-1, -0.99, -0.5, 0, 0.5, 0.99, 1])},
lambda value, mu, sigma, xi: sp.genextreme.logcdf(value, c=-xi, loc=mu, scale=sigma)
if 1 + xi*(value-mu)/sigma > 0 else -np.inf
)

@pytest.mark.parametrize(
"mu, sigma, xi, size, expected",
[
(0, 1, 0, None, 0),
(1, np.arange(1, 4), 0.1, None, 1 + np.arange(1, 4) * (1.1 ** -0.1 - 1) / 0.1),
(np.arange(5), 1, 0.1, None, np.arange(5) + (1.1 ** -0.1 - 1) / 0.1),
(
0,
1,
np.linspace(-0.2, 0.2, 6),
None,
((1 + np.linspace(-0.2, 0.2, 6)) ** -np.linspace(-0.2, 0.2, 6) - 1)
/ np.linspace(-0.2, 0.2, 6),
),
(1, 2, 0.1, 5, np.full(5, 1 + 2 * (1.1 ** -0.1 - 1) / 0.1)),
(
np.arange(6),
np.arange(1, 7),
np.linspace(-0.2, 0.2, 6),
(3, 6),
np.full(
(3, 6),
np.arange(6)
+ np.arange(1, 7)
* ((1 + np.linspace(-0.2, 0.2, 6)) ** -np.linspace(-0.2, 0.2, 6) - 1)
/ np.linspace(-0.2, 0.2, 6),
),
),
],
)
def test_genextreme_moment(self, mu, sigma, xi, size, expected):
with pm.Model() as model:
GenExtreme("x", mu=mu, sigma=sigma, xi=xi, size=size)
assert_moment_is_expected(model, expected)

def test_gen_extreme_scipy_kwarg(self):
dist = GenExtreme.dist(xi=1, scipy=False)
assert dist.owner.inputs[-1].eval() == 1

dist = GenExtreme.dist(xi=1, scipy=True)
assert dist.owner.inputs[-1].eval() == -1


class TestGenExtreme(BaseTestDistributionRandom):
pymc_dist = GenExtreme
pymc_dist_params = {"mu": 0, "sigma": 1, "xi": -0.1}
expected_rv_op_params = {"mu": 0, "sigma": 1, "xi": -0.1}
# Notice, using different parametrization of xi sign to scipy
reference_dist_params = {"loc": 0, "scale": 1, "c": 0.1}
reference_dist = seeded_scipy_distribution_builder("genextreme")
tests_to_run = [
"check_pymc_params_match_rv_op",
"check_pymc_draws_match_reference",
"check_rv_size",
]
Loading