Closed
Description
Description of your problem
When running a sample_prior_predictive
for a GaussianRandomWalk
, the result looks not even close to what one would expect:
x = numpy.arange(0, 10)
with pymc3.Model() as pmodel:
grw = pymc3.GaussianRandomWalk('grw', mu=0, sd=1, shape=len(x))
pp = pymc3.sample_prior_predictive()
fig, (left, right) = pyplot.subplots(ncols=2, figsize=(10,5))
for i in numpy.random.randint(0, 500, size=40):
left.plot(x, pp['grw'][i,:])
left.set_title('sample_prior_predictive')
for _ in range(50):
right.plot(x, grw.random())
right.set_title('.random()')
pyplot.show()
Versions and main components
- PyMC3 Version: latest master
- Theano Version: the one and only
- Python Version: 3.6.8
- Operating system: Windows
- How did you install PyMC3: pip