Skip to content

Fix Mixture distribution mode computation and logp dimensions #3995

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 8 additions & 4 deletions pymc3/distributions/mixture.py
Original file line number Diff line number Diff line change
Expand Up @@ -153,9 +153,13 @@ def __init__(self, w, comp_dists, *args, **kwargs):
dtype = kwargs.pop('dtype', default_dtype)

try:
comp_modes = self._comp_modes()
comp_mode_logps = self.logp(comp_modes)
self.mode = comp_modes[tt.argmax(w * comp_mode_logps, axis=-1)]
if isinstance(comp_dists, Distribution):
comp_mode_logps = comp_dists.logp(comp_dists.mode)
else:
comp_mode_logps = tt.stack([cd.logp(cd.mode) for cd in comp_dists])

mode_idx = tt.argmax(tt.log(w) + comp_mode_logps, axis=-1)
self.mode = self._comp_modes()[mode_idx]

if 'mode' not in defaults:
defaults.append('mode')
Expand Down Expand Up @@ -427,7 +431,7 @@ def logp(self, value):
"""
w = self.w

return bound(logsumexp(tt.log(w) + self._comp_logp(value), axis=-1),
return bound(logsumexp(tt.log(w) + self._comp_logp(value), axis=-1, keepdims=False),
w >= 0, w <= 1, tt.allclose(w.sum(axis=-1), 1),
broadcast_conditions=False)

Expand Down
5 changes: 3 additions & 2 deletions pymc3/math.py
Original file line number Diff line number Diff line change
Expand Up @@ -168,10 +168,11 @@ def tround(*args, **kwargs):
return tt.round(*args, **kwargs)


def logsumexp(x, axis=None):
def logsumexp(x, axis=None, keepdims=True):
# Adapted from https://github.com/Theano/Theano/issues/1563
x_max = tt.max(x, axis=axis, keepdims=True)
return tt.log(tt.sum(tt.exp(x - x_max), axis=axis, keepdims=True)) + x_max
res = tt.log(tt.sum(tt.exp(x - x_max), axis=axis, keepdims=True)) + x_max
return res if keepdims else res.squeeze()


def logaddexp(a, b):
Expand Down
15 changes: 13 additions & 2 deletions pymc3/tests/test_mixture.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,17 @@ def setup_class(cls):
cls.pois_mu = np.array([5., 20.])
cls.pois_x = generate_poisson_mixture_data(cls.pois_w, cls.pois_mu, size=1000)

def test_dimensions(self):
a1 = Normal.dist(mu=0, sigma=1)
a2 = Normal.dist(mu=10, sigma=1)
mix = Mixture.dist(w=np.r_[0.5, 0.5], comp_dists=[a1, a2])

assert mix.mode.ndim == 0
assert mix.logp(0.0).ndim == 0

value = np.r_[0.0, 1.0, 2.0]
assert mix.logp(value).ndim == 1

def test_mixture_list_of_normals(self):
with Model() as model:
w = Dirichlet('w', floatX(np.ones_like(self.norm_w)))
Expand Down Expand Up @@ -252,7 +263,7 @@ def test_mixture_of_mvn(self):
# check logp of mixture
testpoint = model.test_point
mixlogp_st = logsumexp(np.log(testpoint['w']) + complogp_st,
axis=-1, keepdims=True)
axis=-1, keepdims=False)
assert_allclose(y.logp_elemwise(testpoint),
mixlogp_st)

Expand Down Expand Up @@ -321,7 +332,7 @@ def mixmixlogp(value, point):
complogp_mix = np.concatenate((mixlogp1, mixlogp2), axis=1)
mixmixlogpg = logsumexp(np.log(point['mix_w']).astype(floatX) +
complogp_mix,
axis=-1, keepdims=True)
axis=-1, keepdims=False)
return priorlogp, mixmixlogpg

value = np.exp(self.norm_x)[:, None]
Expand Down