Skip to content

Implement ScalarLoop in torch backend #958

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 27 commits into from
Dec 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 39 additions & 0 deletions pytensor/link/pytorch/dispatch/elemwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
import torch

from pytensor.link.pytorch.dispatch.basic import pytorch_funcify
from pytensor.scalar import ScalarLoop
from pytensor.tensor.elemwise import DimShuffle, Elemwise
from pytensor.tensor.math import All, Any, Max, Min, Prod, Sum
from pytensor.tensor.special import LogSoftmax, Softmax, SoftmaxGrad
Expand All @@ -11,6 +12,7 @@
@pytorch_funcify.register(Elemwise)
def pytorch_funcify_Elemwise(op, node, **kwargs):
scalar_op = op.scalar_op

base_fn = pytorch_funcify(scalar_op, node=node, **kwargs)

def check_special_scipy(func_name):
Expand All @@ -33,6 +35,9 @@
Elemwise._check_runtime_broadcast(node, inputs)
return base_fn(*inputs)

elif isinstance(scalar_op, ScalarLoop):
return elemwise_ravel_fn(base_fn, op, node, **kwargs)

else:

def elemwise_fn(*inputs):
Expand Down Expand Up @@ -176,3 +181,37 @@
return dy_times_sm - torch.sum(dy_times_sm, dim=axis, keepdim=True) * sm

return softmax_grad


def elemwise_ravel_fn(base_fn, op, node, **kwargs):
"""
Dispatch methods using `.item()` (ScalarLoop + Elemwise) is common, but vmap
in torch has a limitation: https://github.com/pymc-devs/pytensor/issues/1031,
Instead, we can ravel all the inputs, broadcasted according to torch
"""

n_outputs = len(node.outputs)

def elemwise_fn(*inputs):
bcasted_inputs = torch.broadcast_tensors(*inputs)
raveled_inputs = [inp.ravel() for inp in bcasted_inputs]

out_shape = bcasted_inputs[0].size()
out_size = out_shape.numel()
raveled_outputs = [torch.empty(out_size) for out in node.outputs]

for i in range(out_size):
core_outs = base_fn(*(inp[i] for inp in raveled_inputs))
if n_outputs == 1:
raveled_outputs[0][i] = core_outs

Check warning on line 206 in pytensor/link/pytorch/dispatch/elemwise.py

View check run for this annotation

Codecov / codecov/patch

pytensor/link/pytorch/dispatch/elemwise.py#L206

Added line #L206 was not covered by tests
else:
for o in range(n_outputs):
raveled_outputs[o][i] = core_outs[o]

outputs = tuple(out.view(out_shape) for out in raveled_outputs)
if n_outputs == 1:
return outputs[0]

Check warning on line 213 in pytensor/link/pytorch/dispatch/elemwise.py

View check run for this annotation

Codecov / codecov/patch

pytensor/link/pytorch/dispatch/elemwise.py#L213

Added line #L213 was not covered by tests
else:
return outputs

return elemwise_fn
35 changes: 35 additions & 0 deletions pytensor/link/pytorch/dispatch/scalar.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
Cast,
ScalarOp,
)
from pytensor.scalar.loop import ScalarLoop
from pytensor.scalar.math import Softplus


Expand Down Expand Up @@ -62,3 +63,37 @@
@pytorch_funcify.register(Softplus)
def pytorch_funcify_Softplus(op, node, **kwargs):
return torch.nn.Softplus()


@pytorch_funcify.register(ScalarLoop)
def pytorch_funicify_ScalarLoop(op, node, **kwargs):
update = pytorch_funcify(op.fgraph, **kwargs)
state_length = op.nout
if op.is_while:

def scalar_loop(steps, *start_and_constants):
carry, constants = (

Check warning on line 75 in pytensor/link/pytorch/dispatch/scalar.py

View check run for this annotation

Codecov / codecov/patch

pytensor/link/pytorch/dispatch/scalar.py#L75

Added line #L75 was not covered by tests
start_and_constants[:state_length],
start_and_constants[state_length:],
)
done = True

Check warning on line 79 in pytensor/link/pytorch/dispatch/scalar.py

View check run for this annotation

Codecov / codecov/patch

pytensor/link/pytorch/dispatch/scalar.py#L79

Added line #L79 was not covered by tests
for _ in range(steps):
*carry, done = update(*carry, *constants)
if torch.any(done):
break
return *carry, done
else:

def scalar_loop(steps, *start_and_constants):
carry, constants = (

Check warning on line 88 in pytensor/link/pytorch/dispatch/scalar.py

View check run for this annotation

Codecov / codecov/patch

pytensor/link/pytorch/dispatch/scalar.py#L88

Added line #L88 was not covered by tests
start_and_constants[:state_length],
start_and_constants[state_length:],
)
for _ in range(steps):
carry = update(*carry, *constants)
if len(node.outputs) == 1:
return carry[0]
else:
return carry

Check warning on line 97 in pytensor/link/pytorch/dispatch/scalar.py

View check run for this annotation

Codecov / codecov/patch

pytensor/link/pytorch/dispatch/scalar.py#L97

Added line #L97 was not covered by tests

return scalar_loop
14 changes: 5 additions & 9 deletions pytensor/link/pytorch/linker.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,34 +54,30 @@ def __init__(self, fn, gen_functors):
self.fn = torch.compile(fn)
self.gen_functors = gen_functors.copy()

def __call__(self, *args, **kwargs):
def __call__(self, *inputs, **kwargs):
import pytensor.link.utils

# set attrs
for n, fn in self.gen_functors:
setattr(pytensor.link.utils, n[1:], fn)

res = self.fn(*args, **kwargs)
# Torch does not accept numpy inputs and may return GPU objects
outs = self.fn(*(pytorch_typify(inp) for inp in inputs), **kwargs)

# unset attrs
for n, _ in self.gen_functors:
if getattr(pytensor.link.utils, n[1:], False):
delattr(pytensor.link.utils, n[1:])

return res
return tuple(out.cpu().numpy() for out in outs)

def __del__(self):
del self.gen_functors

inner_fn = wrapper(fn, self.gen_functors)
self.gen_functors = []

# Torch does not accept numpy inputs and may return GPU objects
def fn(*inputs, inner_fn=inner_fn):
outs = inner_fn(*(pytorch_typify(inp) for inp in inputs))
return tuple(out.cpu().numpy() for out in outs)

return fn
return inner_fn

def create_thunk_inputs(self, storage_map):
thunk_inputs = []
Expand Down
86 changes: 86 additions & 0 deletions tests/link/pytorch/test_basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
import numpy as np
import pytest

import pytensor.tensor as pt
import pytensor.tensor.basic as ptb
from pytensor.compile.builders import OpFromGraph
from pytensor.compile.function import function
Expand All @@ -17,7 +18,10 @@
from pytensor.ifelse import ifelse
from pytensor.link.pytorch.linker import PytorchLinker
from pytensor.raise_op import CheckAndRaise
from pytensor.scalar import float64, int64
from pytensor.scalar.loop import ScalarLoop
from pytensor.tensor import alloc, arange, as_tensor, empty, expit, eye, softplus
from pytensor.tensor.elemwise import Elemwise
from pytensor.tensor.type import matrices, matrix, scalar, vector


Expand Down Expand Up @@ -385,3 +389,85 @@ def test_pytorch_softplus():
out = softplus(x)
f = FunctionGraph([x], [out])
compare_pytorch_and_py(f, [np.random.rand(3)])


def test_ScalarLoop():
n_steps = int64("n_steps")
x0 = float64("x0")
const = float64("const")
x = x0 + const

op = ScalarLoop(init=[x0], constant=[const], update=[x])
x = op(n_steps, x0, const)

fn = function([n_steps, x0, const], x, mode=pytorch_mode)
np.testing.assert_allclose(fn(5, 0, 1), 5)
np.testing.assert_allclose(fn(5, 0, 2), 10)
np.testing.assert_allclose(fn(4, 3, -1), -1)


def test_ScalarLoop_while():
n_steps = int64("n_steps")
x0 = float64("x0")
x = x0 + 1
until = x >= 10

op = ScalarLoop(init=[x0], update=[x], until=until)
fn = function([n_steps, x0], op(n_steps, x0), mode=pytorch_mode)
for res, expected in zip(
[fn(n_steps=20, x0=0), fn(n_steps=20, x0=1), fn(n_steps=5, x0=1)],
[[10, True], [10, True], [6, False]],
strict=True,
):
np.testing.assert_allclose(res[0], np.array(expected[0]))
np.testing.assert_allclose(res[1], np.array(expected[1]))


def test_ScalarLoop_Elemwise_single_carries():
n_steps = int64("n_steps")
x0 = float64("x0")
x = x0 * 2
until = x >= 10

scalarop = ScalarLoop(init=[x0], update=[x], until=until)
op = Elemwise(scalarop)

n_steps = pt.scalar("n_steps", dtype="int32")
x0 = pt.vector("x0", dtype="float32")
state, done = op(n_steps, x0)

f = FunctionGraph([n_steps, x0], [state, done])
args = [
np.array(10).astype("int32"),
np.arange(0, 5).astype("float32"),
]
compare_pytorch_and_py(
f, args, assert_fn=partial(np.testing.assert_allclose, rtol=1e-6)
)


def test_ScalarLoop_Elemwise_multi_carries():
n_steps = int64("n_steps")
x0 = float64("x0")
x1 = float64("x1")
x = x0 * 2
x1_n = x1 * 3
until = x >= 10

scalarop = ScalarLoop(init=[x0, x1], update=[x, x1_n], until=until)
op = Elemwise(scalarop)

n_steps = pt.scalar("n_steps", dtype="int32")
x0 = pt.vector("x0", dtype="float32")
x1 = pt.tensor("c0", dtype="float32", shape=(7, 3, 1))
*states, done = op(n_steps, x0, x1)

f = FunctionGraph([n_steps, x0, x1], [*states, done])
args = [
np.array(10).astype("int32"),
np.arange(0, 5).astype("float32"),
np.random.rand(7, 3, 1).astype("float32"),
]
compare_pytorch_and_py(
f, args, assert_fn=partial(np.testing.assert_allclose, rtol=1e-6)
)
Loading