Skip to content

feat: Added support for aten::unflatten converter #1808

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
98 changes: 98 additions & 0 deletions core/conversion/converters/impl/shuffle.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,104 @@ static auto shuffle_registrations TORCHTRT_UNUSED =
LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());
return true;
}})
.pattern(
{"aten::unflatten.int(Tensor self, int dim, int[] sizes) -> (Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
auto in = args[0].ITensorOrFreeze(ctx);
auto dim = args[1].unwrapToInt();
auto in_shape = util::toVec(in->getDimensions());
std::vector<int64_t> new_shape;
nvinfer1::ITensor* shape_tensor;
if (ctx->input_is_dynamic) {
/*
* In case the dim is negative
* If the dim in negative range is larger than in_shape,
* then it should run into index out of bound error as expected
*/
if (dim < 0) {
dim = in_shape.size() + dim;
}
std::cout << "Dynamic shape case" << std::endl;
LOG_DEBUG("Using dynamic version of reshape layer");
if (args[2].isITensorList()) {
std::cout << "isTensorList case" << std::endl;
LOG_DEBUG("Shape tensor is an ITensorList");
auto expand_shape = args[2].unwrapToITensorList();
auto shape_layer = ctx->net->addShape(*in);
TORCHTRT_CHECK(shape_layer, "Unable to create shape layer from node: " << *n);
auto shape_1d_tensor = shape_layer->getOutput(0);

std::vector<int> before_dim_indices_vector(dim);
std::iota(before_dim_indices_vector.begin(), before_dim_indices_vector.end(), 0);

nvinfer1::ITensor* before_dim_gather_out = nullptr;
if(before_dim_indices_vector.size()){
at::Tensor before_dim_indices = torch::tensor(before_dim_indices_vector).to(torch::kI32);
auto before_dim_indices_out = converters::tensor_to_const(ctx, before_dim_indices);
auto before_dim_gather_layer = ctx->net->addGather(*shape_1d_tensor, *before_dim_indices_out, 0);
TORCHTRT_CHECK(before_dim_gather_layer, "Unable to create gather layer from node: " << *n);
before_dim_gather_out = before_dim_gather_layer->getOutput(0);
}

std::vector<int> after_dim_indices_vector(in_shape.size() - (dim + 1));
std::iota(after_dim_indices_vector.begin(), after_dim_indices_vector.end(), dim + 1);

nvinfer1::ITensor* after_dim_gather_out = nullptr;
if(after_dim_indices_vector.size()){
at::Tensor after_dim_indices = torch::tensor(after_dim_indices_vector).to(torch::kI32);
auto after_dim_indices_out = converters::tensor_to_const(ctx, after_dim_indices);
auto after_dim_gather_layer = ctx->net->addGather(*shape_1d_tensor, *after_dim_indices_out, 0);
TORCHTRT_CHECK(after_dim_gather_layer, "Unable to create gather layer from node: " << *n);
after_dim_gather_out = after_dim_gather_layer->getOutput(0);
}

std::vector<nvinfer1::ITensor*> shape_tensors;
if(before_dim_gather_out){
shape_tensors.push_back(before_dim_gather_out);
}
for(auto new_shape_tensor : expand_shape){
shape_tensors.push_back(new_shape_tensor);
}
if(after_dim_gather_out){
shape_tensors.push_back(after_dim_gather_out);
}

auto shape_cat_layer = ctx->net->addConcatenation(shape_tensors.data(), shape_tensors.size());
TORCHTRT_CHECK(shape_cat_layer, "Unable to create cat layer from node: " << *n);
shape_tensor = shape_cat_layer->getOutput(0);
LOG_DEBUG("Shape tensor shape: " << shape_tensor->getDimensions());
} else if (args[2].isIntList()) {
auto shape_vec = args[2].unwrapToIntList().vec();
// New shape
new_shape.insert(new_shape.end(), in_shape.begin(), in_shape.begin() + dim);
new_shape.insert(new_shape.end(), shape_vec.begin(), shape_vec.end());
new_shape.insert(new_shape.end(), in_shape.begin() + dim + 1, in_shape.end());

shape_tensor = tensor_to_const(ctx, torch::tensor(new_shape).to(torch::kI32));
} else {
LOG_ERROR(
"Invalid IValue type of " << args[2].ivalue_type()
<< " detected for shape tensor from node: " << *n);
}
}
else {
new_shape = torch::unflatten(torch::rand(in_shape), dim, args[2].unwrapToIntList().vec()).sizes().vec();
}
auto shuffle = ctx->net->addShuffle(*in);
shuffle->setName(util::node_info(n).c_str());
TORCHTRT_CHECK(shuffle, "Unable to create shuffle layer from node: " << *n);

if (ctx->input_is_dynamic) {
shuffle->setInput(1, *shape_tensor);
} else {
shuffle->setReshapeDimensions(util::toDims(new_shape));
}

auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle->getOutput(0));
LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());

return true;
}})
.pattern(
{"aten::reshape(Tensor self, int[] shape) -> (Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
Expand Down
52 changes: 52 additions & 0 deletions tests/core/conversion/converters/test_shuffle.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -364,3 +364,55 @@ TEST(Converters, ATenPixelShuffle5DConvertsCorrectly) {

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenUnflattenConvertsCorrectly) {
const auto graph = R"IR(
graph(%x.1 : Tensor):
%2 : int = prim::Constant[value=1]()
%3 : int = prim::Constant[value=512]()
%4 : int = prim::Constant[value=1]()
%5 : int = prim::Constant[value=1]()
%6 : int[] = prim::ListConstruct(%3, %4, %5)
%7 : Tensor = aten::unflatten(%x.1, %2, %6)
return (%7))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

auto in = at::randint(0, 5, {1, 512}, {at::kCUDA});
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});

auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in});

in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {in});

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenUnflattenNegativeDimConvertsCorrectly) {
const auto graph = R"IR(
graph(%x.1 : Tensor):
%2 : int = prim::Constant[value=-1]()
%3 : int = prim::Constant[value=512]()
%4 : int = prim::Constant[value=1]()
%5 : int = prim::Constant[value=1]()
%6 : int[] = prim::ListConstruct(%3, %4, %5)
%7 : Tensor = aten::unflatten(%x.1, %2, %6)
return (%7))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

auto in = at::randint(0, 5, {1, 512}, {at::kCUDA});
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});

auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in});

in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {in});

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}
14 changes: 14 additions & 0 deletions tests/cpp/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ test_suite(
":test_compiled_modules",
":test_default_input_types",
":test_dynamic_fallback",
":test_dynamic_size",
":test_example_tensors",
":test_module_fallback",
":test_modules_as_engines",
Expand All @@ -32,6 +33,7 @@ test_suite(
":test_compiled_modules",
":test_default_input_types",
":test_dynamic_fallback",
":test_dynamic_size",
":test_example_tensors",
":test_module_fallback",
":test_modules_as_engines",
Expand Down Expand Up @@ -142,6 +144,18 @@ cc_test(
}),
)

cc_test(
name = "test_dynamic_size",
srcs = ["test_dynamic_size.cpp"],
deps = [
"//tests/util",
"@googletest//:gtest_main",
] + select({
":use_pre_cxx11_abi": ["@libtorch_pre_cxx11_abi//:libtorch"],
"//conditions:default": ["@libtorch//:libtorch"],
}),
)

cc_test(
name = "test_collections",
srcs = ["test_collections.cpp"],
Expand Down
140 changes: 140 additions & 0 deletions tests/cpp/test_dynamic_size.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
#include <torch/torch.h>
#include <string>
#include "core/compiler.h"
#include "gtest/gtest.h"
#include "tests/util/util.h"
#include "torch/csrc/jit/ir/irparser.h"


TEST(Converters, ATenUnflattenDynShapeShapeCorrectly) {
const auto graph = R"IR(
graph(%x.1 : Tensor):
%2 : int = prim::Constant[value=1]()
%3 : int = prim::Constant[value=512]()
%4 : int = prim::Constant[value=1]()
%5 : int = prim::Constant[value=1]()
%6 : int[] = prim::ListConstruct(%3, %4, %5)
%7 : Tensor = aten::unflatten(%x.1, %2, %6)
return (%7))IR";

auto g = std::make_shared<torch::jit::Graph>();

torch::jit::parseIR(graph, g.get());

auto in = at::randint(0, 10, {1, 512}, {at::kCUDA});

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngineDynamic(g, params, {in}, true);

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenUnflattenDynShapeNegativeDimsShapeCorrectly) {
const auto graph = R"IR(
graph(%x.1 : Tensor):
%2 : int = prim::Constant[value=-2]()
%3 : int = prim::Constant[value=512]()
%4 : int = prim::Constant[value=1]()
%5 : int = prim::Constant[value=1]()
%6 : int[] = prim::ListConstruct(%3, %4, %5)
%7 : Tensor = aten::unflatten(%x.1, %2, %6)
return (%7))IR";

auto g = std::make_shared<torch::jit::Graph>();

torch::jit::parseIR(graph, g.get());

auto in = at::randint(0, 10, {1, 512, 2}, {at::kCUDA});

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngineDynamic(g, params, {in}, true);

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenUnflattenDynShapeITensorShapeCorrectly) {
const auto graph = R"IR(
graph(%x.1 : Tensor):
%2 : int = prim::Constant[value=1]()
%3 : int = aten::size(%x.1, %2)
%4 : int = prim::Constant[value=256]()
%5 : int = prim::Constant[value=2]()
%6 : int[] = prim::ListConstruct(%4, %5)
%7 : Tensor = aten::unflatten(%x.1, %2, %6)
return (%7))IR";
auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

auto in = at::randint(0, 10, {1, 512, 1}, {at::kCUDA});

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngineDynamic(g, params, {in}, true);

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenUnflattenDynShapeITensorShapeCorrectlyFirstDim) {
const auto graph = R"IR(
graph(%x.1 : Tensor):
%1 : int = prim::Constant[value=0]()
%2 : int = prim::Constant[value=1]()
%3 : int = aten::size(%x.1, %1)
%6 : int[] = prim::ListConstruct(%2, %2, %3, %2, %2)
%7 : Tensor = aten::unflatten(%x.1, %1, %6)
return (%7))IR";
auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

auto in = at::randint(0, 10, {64, 512, 1}, {at::kCUDA});

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngineDynamic(g, params, {in}, true);

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenUnflattenDynShapeITensorShapeCorrectlyLastDim) {
const auto graph = R"IR(
graph(%x.1 : Tensor):
%1 : int = prim::Constant[value=2]()
%2 : int = prim::Constant[value=1]()
%3 : int = aten::size(%x.1, %1)
%5 : int = prim::Constant[value=2]()
%6 : int[] = prim::ListConstruct(%3, %2, %2)
%7 : Tensor = aten::unflatten(%x.1, %5, %6)
return (%7))IR";
auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

auto in = at::randint(0, 10, {1, 512, 9}, {at::kCUDA});

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngineDynamic(g, params, {in}, true);

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}