Skip to content

Refactor float implementation #192

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Sep 14, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
318 changes: 159 additions & 159 deletions src/float/add.rs
Original file line number Diff line number Diff line change
@@ -1,196 +1,196 @@
use core::num::Wrapping;

use int::{Int, CastInto};
use float::Float;

/// Returns `a + b`
macro_rules! add {
($a:expr, $b:expr, $ty:ty) => ({
let a = $a;
let b = $b;
let one = Wrapping(1 as <$ty as Float>::Int);
let zero = Wrapping(0 as <$ty as Float>::Int);

let bits = Wrapping(<$ty>::BITS as <$ty as Float>::Int);
let significand_bits = Wrapping(<$ty>::SIGNIFICAND_BITS as <$ty as Float>::Int);
let exponent_bits = bits - significand_bits - one;
let max_exponent = (one << exponent_bits.0 as usize) - one;

let implicit_bit = one << significand_bits.0 as usize;
let significand_mask = implicit_bit - one;
let sign_bit = one << (significand_bits + exponent_bits).0 as usize;
let abs_mask = sign_bit - one;
let exponent_mask = abs_mask ^ significand_mask;
let inf_rep = exponent_mask;
let quiet_bit = implicit_bit >> 1;
let qnan_rep = exponent_mask | quiet_bit;

let mut a_rep = Wrapping(a.repr());
let mut b_rep = Wrapping(b.repr());
let a_abs = a_rep & abs_mask;
let b_abs = b_rep & abs_mask;

// Detect if a or b is zero, infinity, or NaN.
if a_abs - one >= inf_rep - one ||
b_abs - one >= inf_rep - one {
// NaN + anything = qNaN
if a_abs > inf_rep {
return <$ty as Float>::from_repr((a_abs | quiet_bit).0);
}
// anything + NaN = qNaN
if b_abs > inf_rep {
return <$ty as Float>::from_repr((b_abs | quiet_bit).0);
}

if a_abs == inf_rep {
// +/-infinity + -/+infinity = qNaN
if (a.repr() ^ b.repr()) == sign_bit.0 {
return <$ty as Float>::from_repr(qnan_rep.0);
} else {
// +/-infinity + anything remaining = +/- infinity
return a;
}
}
fn add<F: Float>(a: F, b: F) -> F where
u32: CastInto<F::Int>,
F::Int: CastInto<u32>,
i32: CastInto<F::Int>,
F::Int: CastInto<i32>,
{
let one = F::Int::ONE;
let zero = F::Int::ZERO;

let bits = F::BITS.cast();
let significand_bits = F::SIGNIFICAND_BITS;
let max_exponent = F::EXPONENT_MAX;

let implicit_bit = F::IMPLICIT_BIT;
let significand_mask = F::SIGNIFICAND_MASK;
let sign_bit = F::SIGN_MASK as F::Int;
let abs_mask = sign_bit - one;
let exponent_mask = F::EXPONENT_MASK;
let inf_rep = exponent_mask;
let quiet_bit = implicit_bit >> 1;
let qnan_rep = exponent_mask | quiet_bit;

let mut a_rep = a.repr();
let mut b_rep = b.repr();
let a_abs = a_rep & abs_mask;
let b_abs = b_rep & abs_mask;

// Detect if a or b is zero, infinity, or NaN.
if a_abs.wrapping_sub(one) >= inf_rep - one ||
b_abs.wrapping_sub(one) >= inf_rep - one {
// NaN + anything = qNaN
if a_abs > inf_rep {
return F::from_repr(a_abs | quiet_bit);
}
// anything + NaN = qNaN
if b_abs > inf_rep {
return F::from_repr(b_abs | quiet_bit);
}

// anything remaining + +/-infinity = +/-infinity
if b_abs == inf_rep {
return b;
if a_abs == inf_rep {
// +/-infinity + -/+infinity = qNaN
if (a.repr() ^ b.repr()) == sign_bit {
return F::from_repr(qnan_rep);
} else {
// +/-infinity + anything remaining = +/- infinity
return a;
}
}

// zero + anything = anything
if a_abs.0 == 0 {
// but we need to get the sign right for zero + zero
if b_abs.0 == 0 {
return <$ty as Float>::from_repr(a.repr() & b.repr());
} else {
return b;
}
}
// anything remaining + +/-infinity = +/-infinity
if b_abs == inf_rep {
return b;
}

// anything + zero = anything
if b_abs.0 == 0 {
return a;
// zero + anything = anything
if a_abs == Int::ZERO {
// but we need to get the sign right for zero + zero
if b_abs == Int::ZERO {
return F::from_repr(a.repr() & b.repr());
} else {
return b;
}
}

// Swap a and b if necessary so that a has the larger absolute value.
if b_abs > a_abs {
// Don't use mem::swap because it may generate references to memcpy in unoptimized code.
let tmp = a_rep;
a_rep = b_rep;
b_rep = tmp;
// anything + zero = anything
if b_abs == Int::ZERO {
return a;
}
}

// Swap a and b if necessary so that a has the larger absolute value.
if b_abs > a_abs {
// Don't use mem::swap because it may generate references to memcpy in unoptimized code.
let tmp = a_rep;
a_rep = b_rep;
b_rep = tmp;
}

// Extract the exponent and significand from the (possibly swapped) a and b.
let mut a_exponent: i32 = ((a_rep & exponent_mask) >> significand_bits).cast();
let mut b_exponent: i32 = ((b_rep & exponent_mask) >> significand_bits).cast();
let mut a_significand = a_rep & significand_mask;
let mut b_significand = b_rep & significand_mask;

// normalize any denormals, and adjust the exponent accordingly.
if a_exponent == 0 {
let (exponent, significand) = F::normalize(a_significand);
a_exponent = exponent;
a_significand = significand;
}
if b_exponent == 0 {
let (exponent, significand) = F::normalize(b_significand);
b_exponent = exponent;
b_significand = significand;
}

// Extract the exponent and significand from the (possibly swapped) a and b.
let mut a_exponent = Wrapping((a_rep >> significand_bits.0 as usize & max_exponent).0 as i32);
let mut b_exponent = Wrapping((b_rep >> significand_bits.0 as usize & max_exponent).0 as i32);
let mut a_significand = a_rep & significand_mask;
let mut b_significand = b_rep & significand_mask;

// normalize any denormals, and adjust the exponent accordingly.
if a_exponent.0 == 0 {
let (exponent, significand) = <$ty>::normalize(a_significand.0);
a_exponent = Wrapping(exponent);
a_significand = Wrapping(significand);
// The sign of the result is the sign of the larger operand, a. If they
// have opposite signs, we are performing a subtraction; otherwise addition.
let result_sign = a_rep & sign_bit;
let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero;

// Shift the significands to give us round, guard and sticky, and or in the
// implicit significand bit. (If we fell through from the denormal path it
// was already set by normalize(), but setting it twice won't hurt
// anything.)
a_significand = (a_significand | implicit_bit) << 3;
b_significand = (b_significand | implicit_bit) << 3;

// Shift the significand of b by the difference in exponents, with a sticky
// bottom bit to get rounding correct.
let align = a_exponent.wrapping_sub(b_exponent).cast();
if align != Int::ZERO {
if align < bits {
let sticky = F::Int::from_bool(b_significand << bits.wrapping_sub(align).cast() != Int::ZERO);
b_significand = (b_significand >> align.cast()) | sticky;
} else {
b_significand = one; // sticky; b is known to be non-zero.
}
if b_exponent.0 == 0 {
let (exponent, significand) = <$ty>::normalize(b_significand.0);
b_exponent = Wrapping(exponent);
b_significand = Wrapping(significand);
}
if subtraction {
a_significand = a_significand.wrapping_sub(b_significand);
// If a == -b, return +zero.
if a_significand == Int::ZERO {
return F::from_repr(Int::ZERO);
}

// The sign of the result is the sign of the larger operand, a. If they
// have opposite signs, we are performing a subtraction; otherwise addition.
let result_sign = a_rep & sign_bit;
let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero;

// Shift the significands to give us round, guard and sticky, and or in the
// implicit significand bit. (If we fell through from the denormal path it
// was already set by normalize(), but setting it twice won't hurt
// anything.)
a_significand = (a_significand | implicit_bit) << 3;
b_significand = (b_significand | implicit_bit) << 3;

// Shift the significand of b by the difference in exponents, with a sticky
// bottom bit to get rounding correct.
let align = Wrapping((a_exponent - b_exponent).0 as <$ty as Float>::Int);
if align.0 != 0 {
if align < bits {
let sticky = ((b_significand << (bits - align).0 as usize).0 != 0) as <$ty as Float>::Int;
b_significand = (b_significand >> align.0 as usize) | Wrapping(sticky);
} else {
b_significand = one; // sticky; b is known to be non-zero.
}
// If partial cancellation occured, we need to left-shift the result
// and adjust the exponent:
if a_significand < implicit_bit << 3 {
let shift = a_significand.leading_zeros() as i32
- (implicit_bit << 3).leading_zeros() as i32;
a_significand <<= shift;
a_exponent -= shift;
}
if subtraction {
a_significand -= b_significand;
// If a == -b, return +zero.
if a_significand.0 == 0 {
return <$ty as Float>::from_repr(0);
}

// If partial cancellation occured, we need to left-shift the result
// and adjust the exponent:
if a_significand < implicit_bit << 3 {
let shift = a_significand.0.leading_zeros() as i32
- (implicit_bit << 3).0.leading_zeros() as i32;
a_significand <<= shift as usize;
a_exponent -= Wrapping(shift);
}
} else /* addition */ {
a_significand += b_significand;

// If the addition carried up, we need to right-shift the result and
// adjust the exponent:
if (a_significand & implicit_bit << 4).0 != 0 {
let sticky = ((a_significand & one).0 != 0) as <$ty as Float>::Int;
a_significand = a_significand >> 1 | Wrapping(sticky);
a_exponent += Wrapping(1);
}
} else /* addition */ {
a_significand += b_significand;

// If the addition carried up, we need to right-shift the result and
// adjust the exponent:
if a_significand & implicit_bit << 4 != Int::ZERO {
let sticky = F::Int::from_bool(a_significand & one != Int::ZERO);
a_significand = a_significand >> 1 | sticky;
a_exponent += 1;
}
}

// If we have overflowed the type, return +/- infinity:
if a_exponent >= Wrapping(max_exponent.0 as i32) {
return <$ty>::from_repr((inf_rep | result_sign).0);
}
// If we have overflowed the type, return +/- infinity:
if a_exponent >= max_exponent as i32 {
return F::from_repr(inf_rep | result_sign);
}

if a_exponent.0 <= 0 {
// Result is denormal before rounding; the exponent is zero and we
// need to shift the significand.
let shift = Wrapping((Wrapping(1) - a_exponent).0 as <$ty as Float>::Int);
let sticky = ((a_significand << (bits - shift).0 as usize).0 != 0) as <$ty as Float>::Int;
a_significand = a_significand >> shift.0 as usize | Wrapping(sticky);
a_exponent = Wrapping(0);
}
if a_exponent <= 0 {
// Result is denormal before rounding; the exponent is zero and we
// need to shift the significand.
let shift = (1 - a_exponent).cast();
let sticky = F::Int::from_bool((a_significand << bits.wrapping_sub(shift).cast()) != Int::ZERO);
a_significand = a_significand >> shift.cast() | sticky;
a_exponent = 0;
}

// Low three bits are round, guard, and sticky.
let round_guard_sticky: i32 = (a_significand.0 & 0x7) as i32;
// Low three bits are round, guard, and sticky.
let a_significand_i32: i32 = a_significand.cast();
let round_guard_sticky: i32 = a_significand_i32 & 0x7;

// Shift the significand into place, and mask off the implicit bit.
let mut result = a_significand >> 3 & significand_mask;
// Shift the significand into place, and mask off the implicit bit.
let mut result = a_significand >> 3 & significand_mask;

// Insert the exponent and sign.
result |= Wrapping(a_exponent.0 as <$ty as Float>::Int) << significand_bits.0 as usize;
result |= result_sign;
// Insert the exponent and sign.
result |= a_exponent.cast() << significand_bits;
result |= result_sign;

// Final rounding. The result may overflow to infinity, but that is the
// correct result in that case.
if round_guard_sticky > 0x4 { result += one; }
if round_guard_sticky == 0x4 { result += result & one; }
// Final rounding. The result may overflow to infinity, but that is the
// correct result in that case.
if round_guard_sticky > 0x4 { result += one; }
if round_guard_sticky == 0x4 { result += result & one; }

<$ty>::from_repr(result.0)
})
F::from_repr(result)
}

intrinsics! {
#[aapcs_on_arm]
#[arm_aeabi_alias = __aeabi_fadd]
pub extern "C" fn __addsf3(a: f32, b: f32) -> f32 {
add!(a, b, f32)
add(a, b)
}

#[aapcs_on_arm]
#[arm_aeabi_alias = __aeabi_dadd]
pub extern "C" fn __adddf3(a: f64, b: f64) -> f64 {
add!(a, b, f64)
add(a, b)
}
}
Loading