Skip to content

Process current bucket instead of parent's bucket when starting loop for dominators. #111596

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 20, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 8 additions & 8 deletions compiler/rustc_data_structures/src/graph/dominators/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -109,28 +109,27 @@ pub fn dominators<G: ControlFlowGraph>(graph: G) -> Dominators<G::Node> {
// they have been placed in the bucket.
//
// We compute a partial set of immediate dominators here.
let z = parent[w];
for &v in bucket[z].iter() {
for &v in bucket[w].iter() {
// This uses the result of Lemma 5 from section 2 from the original
// 1979 paper, to compute either the immediate or relative dominator
// for a given vertex v.
//
// eval returns a vertex y, for which semi[y] is minimum among
// vertices semi[v] +> y *> v. Note that semi[v] = z as we're in the
// z bucket.
// vertices semi[v] +> y *> v. Note that semi[v] = w as we're in the
// w bucket.
//
// Given such a vertex y, semi[y] <= semi[v] and idom[y] = idom[v].
// If semi[y] = semi[v], though, idom[v] = semi[v].
//
// Using this, we can either set idom[v] to be:
// * semi[v] (i.e. z), if semi[y] is z
// * semi[v] (i.e. w), if semi[y] is w
// * idom[y], otherwise
//
// We don't directly set to idom[y] though as it's not necessarily
// known yet. The second preorder traversal will cleanup by updating
// the idom for any that were missed in this pass.
let y = eval(&mut parent, lastlinked, &semi, &mut label, v);
idom[v] = if semi[y] < z { y } else { z };
idom[v] = if semi[y] < w { y } else { w };
}

// This loop computes the semi[w] for w.
Expand Down Expand Up @@ -213,10 +212,11 @@ pub fn dominators<G: ControlFlowGraph>(graph: G) -> Dominators<G::Node> {
// If we don't yet know the idom directly, then push this vertex into
// our semidominator's bucket, where it will get processed at a later
// stage to compute its immediate dominator.
if parent[w] != semi[w] {
let z = parent[w];
if z != semi[w] {
bucket[semi[w]].push(w);
} else {
idom[w] = parent[w];
idom[w] = z;
}

// Optimization: We share the parent array between processed and not
Expand Down
27 changes: 27 additions & 0 deletions compiler/rustc_data_structures/src/graph/dominators/tests.rs
Original file line number Diff line number Diff line change
Expand Up @@ -53,3 +53,30 @@ fn immediate_dominator() {
assert_eq!(dominators.immediate_dominator(2), Some(1));
assert_eq!(dominators.immediate_dominator(3), Some(2));
}

#[test]
fn transitive_dominator() {
let graph = TestGraph::new(
0,
&[
// First tree branch.
(0, 1),
(1, 2),
(2, 3),
(3, 4),
// Second tree branch.
(1, 5),
(5, 6),
// Third tree branch.
(0, 7),
// These links make 0 the dominator for 2 and 3.
(7, 2),
(5, 3),
],
);

let dom_tree = dominators(&graph);
let immediate_dominators = &dom_tree.immediate_dominators;
assert_eq!(immediate_dominators[2], Some(0));
assert_eq!(immediate_dominators[3], Some(0)); // This used to return Some(1).
}