Skip to content

Change {Box,Arc,Rc,Weak}::into_raw to only work with A = Global #141219

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
229 changes: 117 additions & 112 deletions library/alloc/src/boxed.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1098,115 +1098,6 @@ impl<T: ?Sized> Box<T> {
pub unsafe fn from_non_null(ptr: NonNull<T>) -> Self {
unsafe { Self::from_raw(ptr.as_ptr()) }
}
}

impl<T: ?Sized, A: Allocator> Box<T, A> {
/// Constructs a box from a raw pointer in the given allocator.
///
/// After calling this function, the raw pointer is owned by the
/// resulting `Box`. Specifically, the `Box` destructor will call
/// the destructor of `T` and free the allocated memory. For this
/// to be safe, the memory must have been allocated in accordance
/// with the [memory layout] used by `Box` .
///
/// # Safety
///
/// This function is unsafe because improper use may lead to
/// memory problems. For example, a double-free may occur if the
/// function is called twice on the same raw pointer.
///
/// The raw pointer must point to a block of memory allocated by `alloc`.
///
/// # Examples
///
/// Recreate a `Box` which was previously converted to a raw pointer
/// using [`Box::into_raw_with_allocator`]:
/// ```
/// #![feature(allocator_api)]
///
/// use std::alloc::System;
///
/// let x = Box::new_in(5, System);
/// let (ptr, alloc) = Box::into_raw_with_allocator(x);
/// let x = unsafe { Box::from_raw_in(ptr, alloc) };
/// ```
/// Manually create a `Box` from scratch by using the system allocator:
/// ```
/// #![feature(allocator_api, slice_ptr_get)]
///
/// use std::alloc::{Allocator, Layout, System};
///
/// unsafe {
/// let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32;
/// // In general .write is required to avoid attempting to destruct
/// // the (uninitialized) previous contents of `ptr`, though for this
/// // simple example `*ptr = 5` would have worked as well.
/// ptr.write(5);
/// let x = Box::from_raw_in(ptr, System);
/// }
/// # Ok::<(), std::alloc::AllocError>(())
/// ```
///
/// [memory layout]: self#memory-layout
#[unstable(feature = "allocator_api", issue = "32838")]
#[inline]
pub unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
Box(unsafe { Unique::new_unchecked(raw) }, alloc)
}

/// Constructs a box from a `NonNull` pointer in the given allocator.
///
/// After calling this function, the `NonNull` pointer is owned by
/// the resulting `Box`. Specifically, the `Box` destructor will call
/// the destructor of `T` and free the allocated memory. For this
/// to be safe, the memory must have been allocated in accordance
/// with the [memory layout] used by `Box` .
///
/// # Safety
///
/// This function is unsafe because improper use may lead to
/// memory problems. For example, a double-free may occur if the
/// function is called twice on the same raw pointer.
///
/// The non-null pointer must point to a block of memory allocated by `alloc`.
///
/// # Examples
///
/// Recreate a `Box` which was previously converted to a `NonNull` pointer
/// using [`Box::into_non_null_with_allocator`]:
/// ```
/// #![feature(allocator_api, box_vec_non_null)]
///
/// use std::alloc::System;
///
/// let x = Box::new_in(5, System);
/// let (non_null, alloc) = Box::into_non_null_with_allocator(x);
/// let x = unsafe { Box::from_non_null_in(non_null, alloc) };
/// ```
/// Manually create a `Box` from scratch by using the system allocator:
/// ```
/// #![feature(allocator_api, box_vec_non_null, slice_ptr_get)]
///
/// use std::alloc::{Allocator, Layout, System};
///
/// unsafe {
/// let non_null = System.allocate(Layout::new::<i32>())?.cast::<i32>();
/// // In general .write is required to avoid attempting to destruct
/// // the (uninitialized) previous contents of `non_null`.
/// non_null.write(5);
/// let x = Box::from_non_null_in(non_null, System);
/// }
/// # Ok::<(), std::alloc::AllocError>(())
/// ```
///
/// [memory layout]: self#memory-layout
#[unstable(feature = "allocator_api", issue = "32838")]
// #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
#[inline]
pub unsafe fn from_non_null_in(raw: NonNull<T>, alloc: A) -> Self {
// SAFETY: guaranteed by the caller.
unsafe { Box::from_raw_in(raw.as_ptr(), alloc) }
}

/// Consumes the `Box`, returning a wrapped raw pointer.
///
Expand Down Expand Up @@ -1259,8 +1150,11 @@ impl<T: ?Sized, A: Allocator> Box<T, A> {
#[stable(feature = "box_raw", since = "1.4.0")]
#[inline]
pub fn into_raw(b: Self) -> *mut T {
// Make sure Miri realizes that we transition from a noalias pointer to a raw pointer here.
unsafe { &raw mut *&mut *Self::into_raw_with_allocator(b).0 }
// Avoid `into_raw_with_allocator` as that interacts poorly with Miri's Stacked Borrows.
let mut b = mem::ManuallyDrop::new(b);
// We go through the built-in deref for `Box`, which is crucial for Miri to recognize this
// operation for it's alias tracking.
&raw mut **b
}

/// Consumes the `Box`, returning a wrapped `NonNull` pointer.
Expand Down Expand Up @@ -1322,6 +1216,115 @@ impl<T: ?Sized, A: Allocator> Box<T, A> {
// SAFETY: `Box` is guaranteed to be non-null.
unsafe { NonNull::new_unchecked(Self::into_raw(b)) }
}
}

impl<T: ?Sized, A: Allocator> Box<T, A> {
/// Constructs a box from a raw pointer in the given allocator.
///
/// After calling this function, the raw pointer is owned by the
/// resulting `Box`. Specifically, the `Box` destructor will call
/// the destructor of `T` and free the allocated memory. For this
/// to be safe, the memory must have been allocated in accordance
/// with the [memory layout] used by `Box` .
///
/// # Safety
///
/// This function is unsafe because improper use may lead to
/// memory problems. For example, a double-free may occur if the
/// function is called twice on the same raw pointer.
///
/// The raw pointer must point to a block of memory allocated by `alloc`.
///
/// # Examples
///
/// Recreate a `Box` which was previously converted to a raw pointer
/// using [`Box::into_raw_with_allocator`]:
/// ```
/// #![feature(allocator_api)]
///
/// use std::alloc::System;
///
/// let x = Box::new_in(5, System);
/// let (ptr, alloc) = Box::into_raw_with_allocator(x);
/// let x = unsafe { Box::from_raw_in(ptr, alloc) };
/// ```
/// Manually create a `Box` from scratch by using the system allocator:
/// ```
/// #![feature(allocator_api, slice_ptr_get)]
///
/// use std::alloc::{Allocator, Layout, System};
///
/// unsafe {
/// let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32;
/// // In general .write is required to avoid attempting to destruct
/// // the (uninitialized) previous contents of `ptr`, though for this
/// // simple example `*ptr = 5` would have worked as well.
/// ptr.write(5);
/// let x = Box::from_raw_in(ptr, System);
/// }
/// # Ok::<(), std::alloc::AllocError>(())
/// ```
///
/// [memory layout]: self#memory-layout
#[unstable(feature = "allocator_api", issue = "32838")]
#[inline]
pub unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
Box(unsafe { Unique::new_unchecked(raw) }, alloc)
}

/// Constructs a box from a `NonNull` pointer in the given allocator.
///
/// After calling this function, the `NonNull` pointer is owned by
/// the resulting `Box`. Specifically, the `Box` destructor will call
/// the destructor of `T` and free the allocated memory. For this
/// to be safe, the memory must have been allocated in accordance
/// with the [memory layout] used by `Box` .
///
/// # Safety
///
/// This function is unsafe because improper use may lead to
/// memory problems. For example, a double-free may occur if the
/// function is called twice on the same raw pointer.
///
/// The non-null pointer must point to a block of memory allocated by `alloc`.
///
/// # Examples
///
/// Recreate a `Box` which was previously converted to a `NonNull` pointer
/// using [`Box::into_non_null_with_allocator`]:
/// ```
/// #![feature(allocator_api, box_vec_non_null)]
///
/// use std::alloc::System;
///
/// let x = Box::new_in(5, System);
/// let (non_null, alloc) = Box::into_non_null_with_allocator(x);
/// let x = unsafe { Box::from_non_null_in(non_null, alloc) };
/// ```
/// Manually create a `Box` from scratch by using the system allocator:
/// ```
/// #![feature(allocator_api, box_vec_non_null, slice_ptr_get)]
///
/// use std::alloc::{Allocator, Layout, System};
///
/// unsafe {
/// let non_null = System.allocate(Layout::new::<i32>())?.cast::<i32>();
/// // In general .write is required to avoid attempting to destruct
/// // the (uninitialized) previous contents of `non_null`.
/// non_null.write(5);
/// let x = Box::from_non_null_in(non_null, System);
/// }
/// # Ok::<(), std::alloc::AllocError>(())
/// ```
///
/// [memory layout]: self#memory-layout
#[unstable(feature = "allocator_api", issue = "32838")]
// #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
#[inline]
pub unsafe fn from_non_null_in(raw: NonNull<T>, alloc: A) -> Self {
// SAFETY: guaranteed by the caller.
unsafe { Box::from_raw_in(raw.as_ptr(), alloc) }
}

/// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
///
Expand Down Expand Up @@ -1602,7 +1605,9 @@ impl<T: ?Sized, A: Allocator> Box<T, A> {
where
A: 'a,
{
unsafe { &mut *Box::into_raw(b) }
let (ptr, alloc) = Box::into_raw_with_allocator(b);
mem::forget(alloc);
unsafe { &mut *ptr }
}

/// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
Expand Down
Loading
Loading