Skip to content

feat: add C ndarray interface and refactor implementation for stats/base/snanmeanwd #4802

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 14 commits into from
Mar 15, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
183 changes: 146 additions & 37 deletions lib/node_modules/@stdlib/stats/base/snanmeanwd/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,84 +51,79 @@ The [arithmetic mean][arithmetic-mean] is defined as
var snanmeanwd = require( '@stdlib/stats/base/snanmeanwd' );
```

#### snanmeanwd( N, x, stride )
#### snanmeanwd( N, x, strideX )

Computes the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array `x`, ignoring `NaN` values and using Welford's algorithm.
Computes the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm.

```javascript
var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = snanmeanwd( N, x, 1 );
var v = snanmeanwd( x.length, x, 1 );
// returns ~0.3333
```

The function has the following parameters:

- **N**: number of indexed elements.
- **x**: input [`Float32Array`][@stdlib/array/float32].
- **stride**: index increment for `x`.
- **strideX**: stride length for `x`.

The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,

The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,
<!-- eslint-disable max-len -->

```javascript
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] );
var N = floor( x.length / 2 );
var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN, NaN ] );

var v = snanmeanwd( N, x, 2 );
var v = snanmeanwd( 5, x, 2 );
// returns 1.25
```

Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.

<!-- eslint-disable stdlib/capitalized-comments -->
<!-- eslint-disable stdlib/capitalized-comments, max-len -->

```javascript
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = floor( x0.length / 2 );

var v = snanmeanwd( N, x1, 2 );
var v = snanmeanwd( 5, x1, 2 );
// returns 1.25
```

#### snanmeanwd.ndarray( N, x, stride, offset )
#### snanmeanwd.ndarray( N, x, strideX, offsetX )

Computes the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm and alternative indexing semantics.

```javascript
var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = snanmeanwd.ndarray( N, x, 1, 0 );
var v = snanmeanwd.ndarray( x.length, x, 1, 0 );
// returns ~0.33333
```

The function has the following additional parameters:

- **offset**: starting index for `x`.
- **offsetX**: starting index for `x`.

While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other value in `x` starting from the second value
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other element in `x` starting from the second element

<!-- eslint-disable max-len -->

```javascript
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var N = floor( x.length / 2 );
var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );

var v = snanmeanwd.ndarray( N, x, 2, 1 );
var v = snanmeanwd.ndarray( 5, x, 2, 1 );
// returns 1.25
```

Expand All @@ -154,22 +149,19 @@ var v = snanmeanwd.ndarray( N, x, 2, 1 );
<!-- eslint no-undef: "error" -->

```javascript
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float32Array = require( '@stdlib/array/float32' );
var uniform = require( '@stdlib/random/base/uniform' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var snanmeanwd = require( '@stdlib/stats/base/snanmeanwd' );

var x;
var i;

x = new Float32Array( 10 );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = round( (randu()*100.0) - 50.0 );
function rand() {
if ( bernoulli( 0.8 ) < 1 ) {
return NaN;
}
return uniform( -50.0, 50.0 );
}

var x = filledarrayBy( 10, 'float32', rand );
console.log( x );

var v = snanmeanwd( x.length, x, 1 );
Expand All @@ -180,6 +172,123 @@ console.log( v );

<!-- /.examples -->

<!-- C interface documentation. -->

* * *

<section class="c">

## C APIs

<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->

<section class="intro">

</section>

<!-- /.intro -->

<!-- C usage documentation. -->

<section class="usage">

### Usage

```c
#include "stdlib/stats/base/snanmeanwd.h"
```

#### stdlib_strided_snanmeanwd( N, \*X, strideX )

Computes the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm.

```c
const float x[] = { 1.0f, -2.0f, 0.0f/0.0f, 2.0f };

float v = stdlib_strided_snanmeanwd( 4, x, 1 );
// returns ~0.33333f
```

The function accepts the following arguments:

- **N**: `[in] CBLAS_INT` number of indexed elements.
- **X**: `[in] float*` input array.
- **strideX**: `[in] CBLAS_INT` stride length for `X`.

```c
float stdlib_strided_snanmeanwd( const CBLAS_INT N, const float *X, const CBLAS_INT strideX );
```

#### stdlib_strided_snanmeanwd_ndarray( N, \*X, strideX, offsetX )

Computes the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm and alternative indexing semantics.

```c
const float x[] = { 1.0f, -2.0f, 0.0f/0.0f, 2.0f };

float v = stdlib_strided_snanmeanwd_ndarray( 4, x, 1, 0 );
// returns ~0.33333f
```

The function accepts the following arguments:

- **N**: `[in] CBLAS_INT` number of indexed elements.
- **X**: `[in] float*` input array.
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
- **offsetX**: `[in] CBLAS_INT` starting index for `X`.

```c
float stdlib_strided_snanmeanwd_ndarray( const CBLAS_INT N, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
```

</section>

<!-- /.usage -->

<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="notes">

</section>

<!-- /.notes -->

<!-- C API usage examples. -->

<section class="examples">

### Examples

```c
#include "stdlib/stats/base/snanmeanwd.h"
#include <stdio.h>

int main( void ) {
// Create a strided array:
const float x[] = { 1.0f, 2.0f, 0.0f/0.0f, 3.0f, 0.0f/0.0f, 4.0f, 5.0f, 6.0f, 0.0f/0.0f, 7.0f, 8.0f, 0.0f/0.0f };

// Specify the number of elements:
const int N = 6;

// Specify the stride length:
const int strideX = 2;

// Compute the arithmetic mean:
float v = stdlib_strided_snanmeanwd( N, x, strideX );

// Print the result:
printf( "mean: %f\n", v );
}
```

</section>

<!-- /.examples -->

</section>

<!-- /.c -->

* * *

<section class="references">
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,16 +21,30 @@
// MODULES //

var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float32Array = require( '@stdlib/array/float32' );
var uniform = require( '@stdlib/random/base/uniform' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var pkg = require( './../package.json' ).name;
var snanmeanwd = require( './../lib/snanmeanwd.js' );


// FUNCTIONS //

/**
* Returns a random value.
*
* @private
* @returns {number} random number
*/
function rand() {
if ( bernoulli( 0.8 ) < 1 ) {
return NaN;
}
return uniform( -10.0, 10.0 );
}

/**
* Creates a benchmark function.
*
Expand All @@ -39,17 +53,7 @@ var snanmeanwd = require( './../lib/snanmeanwd.js' );
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = new Float32Array( len );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
}
var x = filledarrayBy( len, 'float32', rand );
return benchmark;

function benchmark( b ) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,10 +22,11 @@

var resolve = require( 'path' ).resolve;
var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float32Array = require( '@stdlib/array/float32' );
var uniform = require( '@stdlib/random/base/uniform' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var tryRequire = require( '@stdlib/utils/try-require' );
var pkg = require( './../package.json' ).name;

Expand All @@ -40,6 +41,19 @@ var opts = {

// FUNCTIONS //

/**
* Returns a random value.
*
* @private
* @returns {number} random number
*/
function rand() {
if ( bernoulli( 0.8 ) < 1 ) {
return NaN;
}
return uniform( -10.0, 10.0 );
}

/**
* Creates a benchmark function.
*
Expand All @@ -48,17 +62,7 @@ var opts = {
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = new Float32Array( len );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
}
var x = filledarrayBy( len, 'float32', rand );
return benchmark;

function benchmark( b ) {
Expand Down
Loading