Skip to content

[Performance]: benchmark_serving results for Qwen3-32B vs Qwen2-32B-FP8 are almost the same. #17788

Open
@hit023

Description

@hit023

Proposal to improve performance

No response

Report of performance regression

I am running vllm on a single H100 NVL node with 95GB VRAM and vllm 0.8.5.post1.
Deployed Qwen3 32B fp16 using:

vllm serve "Qwen/Qwen3-32B" \
    --host 0.0.0.0 \
    --port 8000 \
    --download-dir /workspace \
    --dtype bfloat16 \
    --max-model-len 32000 \
    --enable-chunked-prefill \
    --enable-prefix-caching \
    --seed 42 \
    --max-num-seqs 32 \
    --disable-log-requests

and then ran the benchmark_serving script via:

python3 benchmark_serving.py --dataset-path /root/ShareGPT_V3_unfiltered_cleaned_split.json --host 0.0.0.0 --port 8000 --model "Qwen/Qwen3-32B" --temperature 0.7 --top-k 20 --top-p 0.8

and the results:

============ Serving Benchmark Result ============
Successful requests:                     1000
Benchmark duration (s):                  306.78
Total input tokens:                      217393
Total generated tokens:                  200516
Request throughput (req/s):              3.26
Output token throughput (tok/s):         653.61
Total Token throughput (tok/s):          1362.23
---------------Time to First Token----------------
Mean TTFT (ms):                          146809.12
Median TTFT (ms):                        148069.33
P99 TTFT (ms):                           286485.34
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms):                          47.06
Median TPOT (ms):                        46.24
P99 TPOT (ms):                           66.91
---------------Inter-token Latency----------------
Mean ITL (ms):                           46.74
Median ITL (ms):                         40.27
P99 ITL (ms):                            193.03
==================================================

Deployed Qwen3 32B fp8 using:

vllm serve "Qwen/Qwen3-32B-FP8" \
--host 0.0.0.0 \
--port 8000 \
--download-dir /workspace \
--max-model-len 32000 \
--enable-chunked-prefill \
--enable-prefix-caching \
--seed 42 \
--max-num-seqs 32 \
--disable-log-requests

and the benchmark serving script:

python3 benchmark_serving.py --dataset-path /root/ShareGPT_V3_unfiltered_cleaned_split.json --host 0.0.0.0 --port 8000 --model "Qwen/Qwen3-32B-FP8" --temperature 0.7 --top-k 20 --top-p 0.8

and results:

============ Serving Benchmark Result ============
Successful requests:                     1000
Benchmark duration (s):                  228.73
Total input tokens:                      217393
Total generated tokens:                  201115
Request throughput (req/s):              4.37
Output token throughput (tok/s):         879.25
Total Token throughput (tok/s):          1829.67
---------------Time to First Token----------------
Mean TTFT (ms):                          109054.64
Median TTFT (ms):                        109874.45
P99 TTFT (ms):                           212661.56
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms):                          34.96
Median TPOT (ms):                        34.36
P99 TPOT (ms):                           48.82
---------------Inter-token Latency----------------
Mean ITL (ms):                           34.65
Median ITL (ms):                         30.50
P99 ITL (ms):                            134.48
==================================================

Misc discussion on performance

Any reason why the ~1.6x speedup in throughput expected with fp8 vs fp16 was not seen here (as per https://docs.vllm.ai/en/v0.5.4/quantization/fp8.html)? The output token throughput with fp8 (879) here is only 1.3x of the fp16 number (653).
Same with latency: was expecting a much lower inter-token latency number with fp8 (34ms) vs fp16 (46ms).
Is this because vllm doesn't automatically use the fp8 kernels? Assuming half the memory bandwidth would be required, I would assume nearly double the number of tokens generated in the same unit of time.

Your current environment (if you think it is necessary)

python3 collect_env.py
INFO 05-07 11:59:48 [__init__.py:239] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Debian GNU/Linux 12 (bookworm) (x86_64)
GCC version: (Debian 12.2.0-14) 12.2.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.36

Python version: 3.12.10 (main, Apr 28 2025, 22:12:29) [GCC 12.2.0] (64-bit runtime)
Python platform: Linux-6.8.0-40-generic-x86_64-with-glibc2.36
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA H100 NVL
Nvidia driver version: 550.107.02
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        52 bits physical, 57 bits virtual
Byte Order:                           Little Endian
CPU(s):                               128
On-line CPU(s) list:                  0-127
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 9374F 32-Core Processor
CPU family:                           25
Model:                                17
Thread(s) per core:                   2
Core(s) per socket:                   32
Socket(s):                            2
Stepping:                             1
Frequency boost:                      enabled
CPU(s) scaling MHz:                   48%
CPU max MHz:                          4304.9312
CPU min MHz:                          1500.0000
BogoMIPS:                             7699.51
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recov succor smca fsrm flush_l1d debug_swap
Virtualization:                       AMD-V
L1d cache:                            2 MiB (64 instances)
L1i cache:                            2 MiB (64 instances)
L2 cache:                             64 MiB (64 instances)
L3 cache:                             512 MiB (16 instances)
NUMA node(s):                         2
NUMA node0 CPU(s):                    0-31,64-95
NUMA node1 CPU(s):                    32-63,96-127
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Mitigation; Safe RET
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] flashinfer-python==0.2.1.post2+cu124torch2.6
[pip3] numpy==2.2.5
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.4.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.52.0.dev0
[pip3] triton==3.2.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.5.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
        GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      32-63,96-127    1               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

VLLM_CONFIGURE_LOGGING=1
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    performancePerformance-related issues

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions