Open
Description
Proposal to improve performance
No response
Report of performance regression
No response
Misc discussion on performance
vLLM command
VLLM_ATTENTION_BACKEND=FLASHINFER python3 -m vllm.entrypoints.openai.api_server --model Qwen/Qwen3-32B-AWQ --port 8000 --gpu-memory-utilization 0.90 --tensor-parallel-size 4 --disable-log-requests --quantization awq_marlin -O3
SGLang command
python -m sglang.launch_server --model-path Qwen/Qwen3-32B-AWQ --port 8000 --tensor-parallel-size 4 --quantization awq_marlin --dtype auto --enable-torch-compile --attention-backend flashinfer --show-time-cost --enable-metrics
benchmarking command
vllm bench serve \
--model Qwen/Qwen3-32B-AWQ \
--num-prompts 50 \
--random-input-len 25000 \
--random-output-len 1024 \
--ignore-eos \
--request-rate inf \
vLLM results
============ Serving Benchmark Result ============
Successful requests: 50
Benchmark duration (s): 7303.93
Total input tokens: 1250000
Total generated tokens: 51200
Request throughput (req/s): 0.01
Output token throughput (tok/s): 7.01
Total Token throughput (tok/s): 178.15
---------------Time to First Token----------------
Mean TTFT (ms): 2945424.93
Median TTFT (ms): 3210790.97
P99 TTFT (ms): 6428720.18
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms): 1013.04
Median TPOT (ms): 1013.40
P99 TPOT (ms): 1300.17
---------------Inter-token Latency----------------
Mean ITL (ms): 1013.04
Median ITL (ms): 901.30
P99 ITL (ms): 2331.21
==================================================
SGLang results
============ Serving Benchmark Result ============
Successful requests: 50
Benchmark duration (s): 1737.44
Total input tokens: 1250000
Total generated tokens: 51200
Request throughput (req/s): 0.03
Output token throughput (tok/s): 29.47
Total Token throughput (tok/s): 748.92
---------------Time to First Token----------------
Mean TTFT (ms): 815107.71
Median TTFT (ms): 827756.68
P99 TTFT (ms): 1662652.03
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms): 153.73
Median TPOT (ms): 154.43
P99 TPOT (ms): 374.27
---------------Inter-token Latency----------------
Mean ITL (ms): 153.75
Median ITL (ms): 46.95
P99 ITL (ms): 62.72
==================================================
Am i missing an important argument to include in vLLM?
Your current environment (if you think it is necessary)
Collecting environment information...
PyTorch version: 2.7.0+cu126
Is debug build: False
CUDA used to build PyTorch: 12.6
ROCM used to build PyTorch: N/A
OS: Amazon Linux 2023.6.20250303 (x86_64)
GCC version: (GCC) 11.4.1 20230605 (Red Hat 11.4.1-2)
Clang version: Could not collect
CMake version: version 3.31.6
Libc version: glibc-2.34
Python version: 3.11.11 (main, Mar 17 2025, 21:02:09) [Clang 20.1.0 ] (64-bit runtime)
Python platform: Linux-6.1.129-138.220.amzn2023.x86_64-x86_64-with-glibc2.34
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A10G
GPU 1: NVIDIA A10G
GPU 2: NVIDIA A10G
GPU 3: NVIDIA A10G
Nvidia driver version: 560.35.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 48
On-line CPU(s) list: 0-47
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7R32
CPU family: 23
Model: 49
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 1
Stepping: 0
BogoMIPS: 5600.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save rdpid
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 768 KiB (24 instances)
L1i cache: 768 KiB (24 instances)
L2 cache: 12 MiB (24 instances)
L3 cache: 96 MiB (6 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-47
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec rstack overflow: Mitigation; safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] flake8==7.2.0
[pip3] numpy==2.2.5
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pynvml==12.0.0
[pip3] pyzmq==26.4.0
[pip3] torch==2.7.0
[pip3] torchao==0.10.0
[pip3] torchaudio==2.7.0
[pip3] torchvision==0.22.0
[pip3] transformers==4.51.1
[pip3] triton==3.3.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.5.dev659+g12e6c0b41 (git sha: 12e6c0b41)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PHB PHB PHB 0-47 0 N/A
GPU1 PHB X PHB PHB 0-47 0 N/A
GPU2 PHB PHB X PHB 0-47 0 N/A
GPU3 PHB PHB PHB X 0-47 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
LD_LIBRARY_PATH=/opt/amazon/efa/lib64:/opt/amazon/openmpi/lib64:/opt/amazon/ofi-nccl/lib64:/usr/local/cuda-12.4/lib:/usr/local/cuda-12.4/lib64:/usr/local/cuda-12.4:/usr/local/cuda-12.4/targets/x86_64-linux/lib/:/usr/local/lib:/usr/lib:/lib:/opt/amazon/efa/lib64:/opt/amazon/openmpi/lib64:/opt/amazon/ofi-nccl/lib64:/usr/local/cuda-12.4/lib:/usr/local/cuda-12.4/lib64:/usr/local/cuda-12.4:/usr/local/cuda-12.4/targets/x86_64-linux/lib/:/usr/local/lib:/usr/lib:/lib:/opt/amazon/efa/lib64:/opt/amazon/openmpi/lib64:/opt/amazon/ofi-nccl/lib64:/usr/local/cuda-12.4/lib:/usr/local/cuda-12.4/lib64:/usr/local/cuda-12.4:/usr/local/cuda-12.4/targets/x86_64-linux/lib/:/usr/local/lib:/usr/lib:/lib
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
sglang version == Version: 0.4.6.post2
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.