Skip to content

[Performance]: SGLANG is 4 times faster than vLLM for Qwen/Qwen3-32B-AWQ #18136

Open
@thesillystudent

Description

@thesillystudent

Proposal to improve performance

No response

Report of performance regression

No response

Misc discussion on performance

vLLM command

VLLM_ATTENTION_BACKEND=FLASHINFER python3 -m vllm.entrypoints.openai.api_server --model Qwen/Qwen3-32B-AWQ --port 8000 --gpu-memory-utilization 0.90 --tensor-parallel-size 4  --disable-log-requests --quantization awq_marlin -O3

SGLang command

python -m sglang.launch_server --model-path Qwen/Qwen3-32B-AWQ --port 8000 --tensor-parallel-size 4 --quantization awq_marlin --dtype auto --enable-torch-compile --attention-backend flashinfer --show-time-cost --enable-metrics

benchmarking command

vllm bench serve \
--model Qwen/Qwen3-32B-AWQ \
--num-prompts 50 \
--random-input-len 25000 \
--random-output-len 1024 \
--ignore-eos \
--request-rate inf \

vLLM results

============ Serving Benchmark Result ============
Successful requests:                     50        
Benchmark duration (s):                  7303.93   
Total input tokens:                      1250000   
Total generated tokens:                  51200     
Request throughput (req/s):              0.01      
Output token throughput (tok/s):         7.01      
Total Token throughput (tok/s):          178.15    
---------------Time to First Token----------------
Mean TTFT (ms):                          2945424.93
Median TTFT (ms):                        3210790.97
P99 TTFT (ms):                           6428720.18
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms):                          1013.04   
Median TPOT (ms):                        1013.40   
P99 TPOT (ms):                           1300.17   
---------------Inter-token Latency----------------
Mean ITL (ms):                           1013.04   
Median ITL (ms):                         901.30    
P99 ITL (ms):                            2331.21   
==================================================

SGLang results

============ Serving Benchmark Result ============
Successful requests:                     50        
Benchmark duration (s):                  1737.44   
Total input tokens:                      1250000   
Total generated tokens:                  51200     
Request throughput (req/s):              0.03      
Output token throughput (tok/s):         29.47     
Total Token throughput (tok/s):          748.92    
---------------Time to First Token----------------
Mean TTFT (ms):                          815107.71 
Median TTFT (ms):                        827756.68 
P99 TTFT (ms):                           1662652.03
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms):                          153.73    
Median TPOT (ms):                        154.43    
P99 TPOT (ms):                           374.27    
---------------Inter-token Latency----------------
Mean ITL (ms):                           153.75    
Median ITL (ms):                         46.95     
P99 ITL (ms):                            62.72     
==================================================

Am i missing an important argument to include in vLLM?

Your current environment (if you think it is necessary)

Collecting environment information...
PyTorch version: 2.7.0+cu126
Is debug build: False
CUDA used to build PyTorch: 12.6
ROCM used to build PyTorch: N/A

OS: Amazon Linux 2023.6.20250303 (x86_64)
GCC version: (GCC) 11.4.1 20230605 (Red Hat 11.4.1-2)
Clang version: Could not collect
CMake version: version 3.31.6
Libc version: glibc-2.34

Python version: 3.11.11 (main, Mar 17 2025, 21:02:09) [Clang 20.1.0 ] (64-bit runtime)
Python platform: Linux-6.1.129-138.220.amzn2023.x86_64-x86_64-with-glibc2.34
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA A10G
GPU 1: NVIDIA A10G
GPU 2: NVIDIA A10G
GPU 3: NVIDIA A10G

Nvidia driver version: 560.35.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        48 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               48
On-line CPU(s) list:                  0-47
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 7R32
CPU family:                           23
Model:                                49
Thread(s) per core:                   2
Core(s) per socket:                   24
Socket(s):                            1
Stepping:                             0
BogoMIPS:                             5600.00
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save rdpid
Hypervisor vendor:                    KVM
Virtualization type:                  full
L1d cache:                            768 KiB (24 instances)
L1i cache:                            768 KiB (24 instances)
L2 cache:                             12 MiB (24 instances)
L3 cache:                             96 MiB (6 instances)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-47
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec rstack overflow:   Mitigation; safe RET
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] flake8==7.2.0
[pip3] numpy==2.2.5
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pynvml==12.0.0
[pip3] pyzmq==26.4.0
[pip3] torch==2.7.0
[pip3] torchao==0.10.0
[pip3] torchaudio==2.7.0
[pip3] torchvision==0.22.0
[pip3] transformers==4.51.1
[pip3] triton==3.3.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.5.dev659+g12e6c0b41 (git sha: 12e6c0b41)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
        GPU0    GPU1    GPU2    GPU3    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      PHB     PHB     PHB     0-47    0               N/A
GPU1    PHB      X      PHB     PHB     0-47    0               N/A
GPU2    PHB     PHB      X      PHB     0-47    0               N/A
GPU3    PHB     PHB     PHB      X      0-47    0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

LD_LIBRARY_PATH=/opt/amazon/efa/lib64:/opt/amazon/openmpi/lib64:/opt/amazon/ofi-nccl/lib64:/usr/local/cuda-12.4/lib:/usr/local/cuda-12.4/lib64:/usr/local/cuda-12.4:/usr/local/cuda-12.4/targets/x86_64-linux/lib/:/usr/local/lib:/usr/lib:/lib:/opt/amazon/efa/lib64:/opt/amazon/openmpi/lib64:/opt/amazon/ofi-nccl/lib64:/usr/local/cuda-12.4/lib:/usr/local/cuda-12.4/lib64:/usr/local/cuda-12.4:/usr/local/cuda-12.4/targets/x86_64-linux/lib/:/usr/local/lib:/usr/lib:/lib:/opt/amazon/efa/lib64:/opt/amazon/openmpi/lib64:/opt/amazon/ofi-nccl/lib64:/usr/local/cuda-12.4/lib:/usr/local/cuda-12.4/lib64:/usr/local/cuda-12.4:/usr/local/cuda-12.4/targets/x86_64-linux/lib/:/usr/local/lib:/usr/lib:/lib
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
sglang version == Version: 0.4.6.post2

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    performancePerformance-related issues

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions