Skip to content

[Performance]: Low GPU Utilization (70%) for ViT+Qwen2 VLM Model. #18392

Open
@Oldpan

Description

@Oldpan

Proposal to improve performance

x

Report of performance regression

I am benchmarking a custom model with a VLM structure consisting of ViT + Qwen2. During stress testing, I found that the GPU utilization reaches only 70%. Using the PyTorch profiler, I noticed that each iteration has a 2ms period at the start of Qwen2-forward that doesn't call CUDA. What is this period doing, and can it be optimized?

My Qwen2 model is relatively small at 0.5B.

Image

My scripts:

 vllm serve /custom_model --gpu-memory-utilization 0.8 --port 8523  --max_model_len 4096 --max_num_seqs 256 --limit-mm-per-prompt image=1  --disable-log-requests 

benchmark scripts with --request-rate=20

trace here: https://drive.google.com/file/d/1pGWAH5j2VXviumqH9LRw7jm182_nAlBK/view?usp=drive_link

What are the possible reasons or parameters that could improve performance? Thanks!

Misc discussion on performance

x

Your current environment (if you think it is necessary)

The output of `python collect_env.py`
INFO 05-20 07:17:33 [__init__.py:248] Automatically detected platform cuda.
Collecting environment information...
==============================
        System Info
==============================
OS                           : Ubuntu 24.04.1 LTS (x86_64)
GCC version                  : (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version                : 18.1.3 (1ubuntu1)
CMake version                : version 4.0.0
Libc version                 : glibc-2.39

==============================
       PyTorch Info
==============================
PyTorch version              : 2.7.0+cu126
Is debug build               : False
CUDA used to build PyTorch   : 12.6
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.9 | packaged by Anaconda, Inc. | (main, Feb  6 2025, 18:56:27) [GCC 11.2.0] (64-bit runtime)
Python platform              : Linux-5.4.119-19-0013_plus-x86_64-with-glibc2.39

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.8.61
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : 
GPU 0: NVIDIA GeForce RTX 4090
GPU 1: NVIDIA GeForce RTX 4090
GPU 2: NVIDIA GeForce RTX 4090
GPU 3: NVIDIA GeForce RTX 4090
GPU 4: NVIDIA GeForce RTX 4090
GPU 5: NVIDIA GeForce RTX 4090
GPU 6: NVIDIA GeForce RTX 4090
GPU 7: NVIDIA GeForce RTX 4090

Nvidia driver version        : 535.171.04
cuDNN version                : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.7.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.7.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.7.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.7.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.7.1
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.7.1
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.7.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.7.1
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Address sizes:                   52 bits physical, 48 bits virtual
Byte Order:                      Little Endian
CPU(s):                          112
On-line CPU(s) list:             0-111
Vendor ID:                       GenuineIntel
BIOS Vendor ID:                  Red Hat
Model name:                      Intel(R) Xeon(R) Platinum 8476C
BIOS Model name:                 3.0  CPU @ 2.0GHz
BIOS CPU family:                 1
CPU family:                      6
Model:                           143
Thread(s) per core:              2
Core(s) per socket:              28
Socket(s):                       2
Stepping:                        6
BogoMIPS:                        5200.00
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb ibrs_enhanced fsgsbase bmi1 hle avx2 smep bmi2 erms invpcid rtm avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 wbnoinvd arat avx512vbmi umip avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq movdiri movdir64b fsrm arch_capabilities
Hypervisor vendor:               KVM
Virtualization type:             full
L1d cache:                       2.6 MiB (56 instances)
L1i cache:                       1.8 MiB (56 instances)
L2 cache:                        112 MiB (56 instances)
L3 cache:                        195 MiB (2 instances)
NUMA node(s):                    1
NUMA node0 CPU(s):               0-111
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1:        Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2:        Vulnerable, IBPB: disabled, STIBP: disabled
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected

==============================
Versions of relevant libraries
==============================
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] onnx==1.18.0
[pip3] onnxruntime-gpu==1.22.0
[pip3] pynvml==12.0.0
[pip3] pyzmq==26.3.0
[pip3] torch==2.7.0
[pip3] torchaudio==2.7.0
[pip3] torchvision==0.22.0
[pip3] transformers==4.51.3
[pip3] triton==3.3.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.6.4.1                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.6.80                  pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.6.77                  pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.6.77                  pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.5.1.17                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.3.0.4                 pypi_0    pypi
[conda] nvidia-cufile-cu12        1.11.1.6                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.7.77                pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.7.1.2                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.5.4.2                 pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.3                    pypi_0    pypi
[conda] nvidia-ml-py              12.570.86                pypi_0    pypi
[conda] nvidia-nccl-cu12          2.26.2                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.6.85                  pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.6.77                  pypi_0    pypi
[conda] pynvml                    12.0.0                   pypi_0    pypi
[conda] pyzmq                     26.3.0                   pypi_0    pypi
[conda] torch                     2.7.0                    pypi_0    pypi
[conda] torchaudio                2.7.0                    pypi_0    pypi
[conda] torchvision               0.22.0                   pypi_0    pypi
[conda] transformers              4.51.3                   pypi_0    pypi
[conda] triton                    3.3.0                    pypi_0    pypi

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
Neuron SDK Version           : N/A
vLLM Version                 : 0.9.1.dev66+gd637b9609 (git sha: d637b9609)
vLLM Build Flags:
  CUDA Archs: 8.9; ROCm: Disabled; Neuron: Disabled
GPU Topology:
        GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      PIX     PIX     PIX     SYS     SYS     SYS     SYS     0-111   0               N/A
GPU1    PIX      X      PIX     PIX     SYS     SYS     SYS     SYS     0-111   0               N/A
GPU2    PIX     PIX      X      PIX     SYS     SYS     SYS     SYS     0-111   0               N/A
GPU3    PIX     PIX     PIX      X      SYS     SYS     SYS     SYS     0-111   0               N/A
GPU4    SYS     SYS     SYS     SYS      X      PIX     PIX     PIX     0-111   0               N/A
GPU5    SYS     SYS     SYS     SYS     PIX      X      PIX     PIX     0-111   0               N/A
GPU6    SYS     SYS     SYS     SYS     PIX     PIX      X      PIX     0-111   0               N/A
GPU7    SYS     SYS     SYS     SYS     PIX     PIX     PIX      X      0-111   0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

==============================
     Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=all
CUBLAS_VERSION=12.8.3.14
NVIDIA_REQUIRE_CUDA=cuda>=9.0
CUDA_CACHE_DISABLE=1
TORCH_CUDA_ARCH_LIST=8.9
NCCL_VERSION=2.25.1
NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
VLLM_TORCH_PROFILER_DIR=../vllm_profile
NVIDIA_PRODUCT_NAME=Triton Server
CUDA_VERSION=12.8.0.038
CUDA_VER=12.8.0.038
VLLM_ATTENTION_BACKEND=FLASHINFER
CUDA_VISIBLE_DEVICES=2
CUDA_VISIBLE_DEVICES=2
CUDNN_FRONTEND_VERSION=1.10.0
CUDNN_VERSION=9.7.1.26
NVIDIA_TRITON_SERVER_VERSION=25.02
LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu/:/usr/local/tensorrt/lib/:/opt/tritonserver/backends/tensorrtllm:/usr/local/tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NVIDIA_BUILD_ID=144783146
CUDA_DRIVER_VERSION=570.86.10
NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    performancePerformance-related issues

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions