Open
Description
Proposal to improve performance
No response
Report of performance regression
Hi team! Thanks for the great work.
To use the new Falcon H1 models, I've installed vllm, as well as transformers, from source as detailed in the docs (environment information provided below). I have also seperately installed mamba-ssm and causal-conv1d as this made huggingface's SFTTrainer much faster (pip install --no-build-isolation git+https://github.com/Dao-AILab/causal-conv1d.git@main && pip install git+https://github.com/state-spaces/mamba.git@main
).
I'm running the offline throughput benchmarking script as described below and it seems like Falcon H1 7B is much slower than Qwen 7B. Is this expected?
Falcon Test:
python3 vllm/benchmarks/benchmark_throughput.py --model tiiuae/Falcon-H1-7B-Instruct --dataset-name sonnet --dataset-path vllm/benchmarks/sonnet.txt --num-prompts 100
Falcon Output:
Processed prompts: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████| 100/100 [00:36<00:00, 2.77it/s, est. speed input: 1505.07 toks/s, output: 415.57 toks/s]
Throughput: 2.76 requests/s, 1913.92 total tokens/s, 414.11 output tokens/s
Total num prompt tokens: 54326
Total num output tokens: 15000
Qwen Test:
python3 vllm/benchmarks/benchmark_throughput.py --model Qwen/Qwen2.5-7B-Instruct --dataset-name sonnet --dataset-path vllm/benchmarks/sonnet.txt --num-prompts 100
Qwen Output:
Processed prompts: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████| 100/100 [00:02<00:00, 48.99it/s, est. speed input: 26519.21 toks/s, output: 7349.15 toks/s]
Throughput: 46.48 requests/s, 32132.44 total tokens/s, 6972.48 output tokens/s
Total num prompt tokens: 54127
Total num output tokens: 15000
Misc discussion on performance
No response
Your current environment (if you think it is necessary)
Collecting environment information...
==============================
System Info
==============================
OS : Ubuntu 22.04.5 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version : Could not collect
CMake version : Could not collect
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.7.0+cu126
Is debug build : False
CUDA used to build PyTorch : 12.6
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.12.9 | packaged by Anaconda, Inc. | (main, Feb 6 2025, 18:56:27) [GCC 11.2.0] (64-bit runtime)
Python platform : Linux-5.15.0-112-generic-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.1.105
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA H100 80GB HBM3
GPU 1: NVIDIA H100 80GB HBM3
GPU 2: NVIDIA H100 80GB HBM3
GPU 3: NVIDIA H100 80GB HBM3
GPU 4: NVIDIA H100 80GB HBM3
GPU 5: NVIDIA H100 80GB HBM3
GPU 6: NVIDIA H100 80GB HBM3
GPU 7: NVIDIA H100 80GB HBM3
Nvidia driver version : 550.90.07
cuDNN version : Could not collect
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 104
On-line CPU(s) list: 0-103
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8470
CPU family: 6
Model: 143
Thread(s) per core: 1
Core(s) per socket: 52
Socket(s): 2
Stepping: 8
BogoMIPS: 4000.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
L1d cache: 4.9 MiB (104 instances)
L1i cache: 3.3 MiB (104 instances)
L2 cache: 208 MiB (104 instances)
L3 cache: 210 MiB (2 instances)
NUMA node(s): 8
NUMA node0 CPU(s): 0-12
NUMA node1 CPU(s): 13-25
NUMA node2 CPU(s): 26-38
NUMA node3 CPU(s): 39-51
NUMA node4 CPU(s): 52-64
NUMA node5 CPU(s): 65-77
NUMA node6 CPU(s): 78-90
NUMA node7 CPU(s): 91-103
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pyzmq==26.4.0
[pip3] torch==2.7.0
[pip3] torchaudio==2.7.0
[pip3] torchvision==0.22.0
[pip3] transformers==4.53.0.dev0
[pip3] triton==3.3.0
[conda] numpy 2.2.6 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi
[conda] nvidia-cufile-cu12 1.11.1.6 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.26.2 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi
[conda] pyzmq 26.4.0 pypi_0 pypi
[conda] torch 2.7.0 pypi_0 pypi
[conda] torchaudio 2.7.0 pypi_0 pypi
[conda] torchvision 0.22.0 pypi_0 pypi
[conda] transformers 4.53.0.dev0 pypi_0 pypi
[conda] triton 3.3.0 pypi_0 pypi
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.9.1.dev2+ge0cbad4e3 (git sha: e0cbad4e3)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 NIC9 NIC10 NIC11 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 PIX PIX PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS 0-12 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS 26-38 2 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 SYS SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS 39-51 3 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 SYS SYS SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS 13-25 1 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS SYS SYS SYS SYS PIX PIX PIX SYS SYS SYS 52-64 4 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS SYS SYS SYS SYS SYS SYS SYS PIX SYS SYS 78-90 6 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS SYS SYS SYS SYS SYS SYS SYS SYS PIX SYS 91-103 7 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS SYS SYS SYS SYS SYS SYS SYS SYS SYS PIX 65-77 5 N/A
NIC0 PIX SYS SYS SYS SYS SYS SYS SYS X PIX PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS
NIC1 PIX SYS SYS SYS SYS SYS SYS SYS PIX X PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS
NIC2 PIX SYS SYS SYS SYS SYS SYS SYS PIX PIX X SYS SYS SYS SYS SYS SYS SYS SYS SYS
NIC3 SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS X SYS SYS SYS SYS SYS SYS SYS SYS
NIC4 SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS X SYS SYS SYS SYS SYS SYS SYS
NIC5 SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS X SYS SYS SYS SYS SYS SYS
NIC6 SYS SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS X PIX PIX SYS SYS SYS
NIC7 SYS SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS PIX X PIX SYS SYS SYS
NIC8 SYS SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS PIX PIX X SYS SYS SYS
NIC9 SYS SYS SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS SYS SYS X SYS SYS
NIC10 SYS SYS SYS SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS SYS SYS X SYS
NIC11 SYS SYS SYS SYS SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS SYS SYS X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
NIC8: mlx5_8
NIC9: mlx5_9
NIC10: mlx5_10
NIC11: mlx5_11
==============================
Environment Variables
==============================
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
(falcon) root@f0f2fe499ad9:/alloc/vllm# ```
### Before submitting a new issue...
- [x] Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.