Description
Proposal to improve performance
for i, engine_prompt in enumerate(engine_prompts):
request_id_item = f"{request_id}-{i}"
self._log_inputs(request_id_item,
request_prompts[i],
params=pooling_params,
lora_request=lora_request,
prompt_adapter_request=prompt_adapter_request)
trace_headers = (None if raw_request is None else await
self._get_trace_headers(raw_request.headers))
generator = self.engine_client.encode(
engine_prompt,
pooling_params,
request_id_item,
lora_request=lora_request,
trace_headers=trace_headers,
priority=request.priority,
)
generators.append(generator)
This will not make full use of the gpu batch feature.
Report of performance regression
No response
Misc discussion on performance
When bench qps exceeds a certain threshold, rt will increase significantly.
eg: gpu.toCpu->cudaMemcpy, from 0ms -> 300+ms
Your current environment (if you think it is necessary)
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Alibaba Group Enterprise Linux Server 7.2 (Paladin) (x86_64)
GCC version: (GCC) 10.2.1 20200825 (Alibaba 10.2.1-3 2.17)
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.32
Python version: 3.10.9 (main, Jan 11 2023, 15:21:40) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.10.134-18.al8.x86_64-x86_64-with-glibc2.32
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A10
GPU 1: NVIDIA A10
GPU 2: NVIDIA A10
GPU 3: NVIDIA A10
Nvidia driver version: 570.144
cuDNN version: Probably one of the following:
/usr/local/cuda-12.6/targets/x86_64-linux/lib/libcudnn.so.9.5.1
/usr/local/cuda-12.6/targets/x86_64-linux/lib/libcudnn_adv.so.9.5.1
/usr/local/cuda-12.6/targets/x86_64-linux/lib/libcudnn_cnn.so.9.5.1
/usr/local/cuda-12.6/targets/x86_64-linux/lib/libcudnn_engines_precompiled.so.9.5.1
/usr/local/cuda-12.6/targets/x86_64-linux/lib/libcudnn_engines_runtime_compiled.so.9.5.1
/usr/local/cuda-12.6/targets/x86_64-linux/lib/libcudnn_graph.so.9.5.1
/usr/local/cuda-12.6/targets/x86_64-linux/lib/libcudnn_heuristic.so.9.5.1
/usr/local/cuda-12.6/targets/x86_64-linux/lib/libcudnn_ops.so.9.5.1
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 106
Model name: Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz
Stepping: 6
CPU MHz: 2900.000
BogoMIPS: 5800.00
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 48K
L1i cache: 32K
L2 cache: 1280K
L3 cache: 49152K
NUMA node0 CPU(s): 0-63
NUMA node1 CPU(s): 64-127
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd arat avx512vbmi avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm arch_capabilities
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.575.51
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pynvml==12.0.0
[pip3] pyzmq==26.4.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.3
[pip3] triton==3.2.0
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi
[conda] nvidia-ml-py 12.575.51 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] pynvml 12.0.0 pypi_0 pypi
[conda] pyzmq 26.4.0 pypi_0 pypi
[conda] torch 2.6.0 pypi_0 pypi
[conda] torchaudio 2.6.0 pypi_0 pypi
[conda] torchvision 0.21.0 pypi_0 pypi
[conda] transformers 4.51.3 pypi_0 pypi
[conda] triton 3.2.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.1.dev1+g77f251c (git sha: 77f251c)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PHB PHB PHB 0-127 0-1 N/A
GPU1 PHB X PHB PHB 0-127 0-1 N/A
GPU2 PHB PHB X PHB 0-127 0-1 N/A
GPU3 PHB PHB PHB X 0-127 0-1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
LD_LIBRARY_PATH=/usr/local/nvidia/lib64:/usr/lib64:/usr/local/cuda/lib64:
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.