Skip to content

fix StableDiffusionTensorRT super args error #6009

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 11 additions & 2 deletions examples/community/stable_diffusion_tensorrt_img2img.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@
save_engine,
)
from polygraphy.backend.trt import util as trt_util
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection

from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import (
Expand Down Expand Up @@ -709,6 +709,7 @@ def __init__(
scheduler: DDIMScheduler,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
image_encoder: CLIPVisionModelWithProjection = None,
requires_safety_checker: bool = True,
stages=["clip", "unet", "vae", "vae_encoder"],
image_height: int = 512,
Expand All @@ -724,7 +725,15 @@ def __init__(
timing_cache: str = "timing_cache",
):
super().__init__(
vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker
vae,
text_encoder,
tokenizer,
unet,
scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
requires_safety_checker=requires_safety_checker,
)

self.vae.forward = self.vae.decode
Expand Down
13 changes: 11 additions & 2 deletions examples/community/stable_diffusion_tensorrt_inpaint.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@
save_engine,
)
from polygraphy.backend.trt import util as trt_util
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection

from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import (
Expand Down Expand Up @@ -710,6 +710,7 @@ def __init__(
scheduler: DDIMScheduler,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
image_encoder: CLIPVisionModelWithProjection = None,
requires_safety_checker: bool = True,
stages=["clip", "unet", "vae", "vae_encoder"],
image_height: int = 512,
Expand All @@ -725,7 +726,15 @@ def __init__(
timing_cache: str = "timing_cache",
):
super().__init__(
vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker
vae,
text_encoder,
tokenizer,
unet,
scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
requires_safety_checker=requires_safety_checker,
)

self.vae.forward = self.vae.decode
Expand Down
13 changes: 11 additions & 2 deletions examples/community/stable_diffusion_tensorrt_txt2img.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@
save_engine,
)
from polygraphy.backend.trt import util as trt_util
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection

from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import (
Expand Down Expand Up @@ -624,6 +624,7 @@ def __init__(
scheduler: DDIMScheduler,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
image_encoder: CLIPVisionModelWithProjection = None,
requires_safety_checker: bool = True,
stages=["clip", "unet", "vae"],
image_height: int = 768,
Expand All @@ -639,7 +640,15 @@ def __init__(
timing_cache: str = "timing_cache",
):
super().__init__(
vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker
vae,
text_encoder,
tokenizer,
unet,
scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
requires_safety_checker=requires_safety_checker,
)

self.vae.forward = self.vae.decode
Expand Down