Skip to content

Revert "[mlir][linalg] Relax tensor.extract vectorization" #102232

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 20 additions & 15 deletions mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -946,22 +946,27 @@ getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp,
if (linalgOp.hasDynamicShape())
return VectorMemoryAccessKind::Gather;

// True for vectors that are effectively 1D, e.g. `vector<1x4x1xi32>`, false
// otherwise.
bool isOutput1DVector = (llvm::count_if(targetShape, [](int64_t dimSize) {
return dimSize > 1;
}) == 1);

// 1. Assume that it's a gather load when reading non-1D vector.
if (!isOutput1DVector)
// 1. Assume that it's a gather load when reading _into_:
// * an n-D "vector", like `tensor<1x2x4xi32` or `tensor<2x1x4xi32>`, or
// * a 1-D "vector" with the trailing dim equal 1, e.g. `tensor<1x4x1xi32`.
// TODO: Relax these conditions.
// FIXME: This condition assumes non-dynamic sizes.
if ((llvm::count_if(targetShape,
[](int64_t dimSize) { return dimSize > 1; }) != 1) ||
targetShape.back() == 1)
return VectorMemoryAccessKind::Gather;

// 2. Assume that it's a gather load when reading _from_ a tensor for which
// the trailing dimension is 1, e.g. `tensor<1x4x1xi32>`.
// TODO: Relax this condition.
if (inputShape.getShape().back() == 1)
return VectorMemoryAccessKind::Gather;

bool leadingIdxsLoopInvariant = true;

// 2. Analyze the leading indices of `extractOp`.
// 3. Analyze the leading indices of `extractOp`.
// Look at the way each index is calculated and decide whether it is suitable
// for a contiguous load, i.e. whether it's loop invariant. If not, it's a
// gather load.
// for a contiguous load, i.e. whether it's loop invariant.
auto indices = extractOp.getIndices();
auto leadIndices = indices.drop_back(1);

Expand All @@ -977,13 +982,13 @@ getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp,
return VectorMemoryAccessKind::Gather;
}

// 3. Analyze the trailing index for `extractOp`.
// 4. Analyze the trailing index for `extractOp`.
// At this point we know that the leading indices are loop invariant. This
// means that is potentially a scalar or a contiguous load. We can decide
// based on the trailing idx.
auto extractOpTrailingIdx = indices.back();

// 3a. Scalar broadcast load
// 4a. Scalar broadcast load
// If the trailing index is loop invariant then this is a scalar load.
if (leadingIdxsLoopInvariant &&
isLoopInvariantIdx(linalgOp, extractOpTrailingIdx)) {
Expand All @@ -992,7 +997,7 @@ getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp,
return VectorMemoryAccessKind::ScalarBroadcast;
}

// 3b. Contiguous loads
// 4b. Contiguous loads
// The trailing `extractOp` index should increment with every loop iteration.
// This effectively means that it must be based on the trailing loop index.
// This is what the following bool captures.
Expand All @@ -1006,7 +1011,7 @@ getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp,
return VectorMemoryAccessKind::Contiguous;
}

// 4. Fallback case - gather load.
// 5. Fallback case - gather load.
LDBG("Found gather load: " << extractOp);
return VectorMemoryAccessKind::Gather;
}
Expand Down
56 changes: 0 additions & 56 deletions mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -595,59 +595,3 @@ module attributes {transform.with_named_sequence} {
transform.yield
}
}


// -----

func.func @vectorize_scalar_broadcast_column_tensor(%in: tensor<1x1x4xi32>) -> tensor<1x1x4xi32> {
%c4 = arith.constant 4 : index
%c0 = arith.constant 0 : index
%cst = arith.constant dense<[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]]> : tensor<15x1xi32>

%out = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} outs(%in : tensor<1x1x4xi32>) {
^bb0(%out: i32):
%8 = linalg.index 0 : index
%idx_0 = linalg.index 0 : index
%extracted = tensor.extract %cst[%idx_0, %c0] : tensor<15x1xi32>
linalg.yield %extracted : i32
} -> tensor<1x1x4xi32>

return %out:tensor<1x1x4xi32>
}

// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1) -> (0, 0, 0)>
// CHECK-LABEL: func.func @vectorize_scalar_broadcast_column_tensor(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<1x1x4xi32>) -> tensor<1x1x4xi32> {
// CHECK: %[[VAL_1:.*]] = arith.constant 4 : index
// CHECK: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_3:.*]] = arith.constant dense<{{\[\[}}0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]]> : tensor<15x1xi32>
// CHECK: %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_6:.*]] = arith.constant 4 : index
// CHECK: %[[VAL_7:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_8:.*]] = arith.constant 0 : i32
// CHECK: %[[VAL_9:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_7]], %[[VAL_7]], %[[VAL_7]]], %[[VAL_8]] : tensor<1x1x4xi32>, vector<1x1x4xi32>
// CHECK: %[[VAL_10:.*]] = vector.step : vector<1xindex>
// CHECK: %[[VAL_11:.*]] = vector.broadcast %[[VAL_10]] : vector<1xindex> to vector<4x1x1xindex>
// CHECK: %[[VAL_12:.*]] = vector.transpose %[[VAL_11]], [2, 1, 0] : vector<4x1x1xindex> to vector<1x1x4xindex>
// CHECK: %[[VAL_13:.*]] = vector.step : vector<1xindex>
// CHECK: %[[VAL_14:.*]] = vector.broadcast %[[VAL_13]] : vector<1xindex> to vector<4x1x1xindex>
// CHECK: %[[VAL_15:.*]] = vector.transpose %[[VAL_14]], [2, 1, 0] : vector<4x1x1xindex> to vector<1x1x4xindex>
// CHECK: %[[VAL_16:.*]] = arith.constant dense<true> : vector<1x1x4xi1>
// CHECK: %[[VAL_17:.*]] = arith.constant dense<0> : vector<1x1x4xi32>
// CHECK: %[[VAL_18:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_19:.*]] = arith.constant 0 : i32
// CHECK: %[[VAL_20:.*]] = vector.shape_cast %[[VAL_15]] : vector<1x1x4xindex> to vector<4xindex>
// CHECK: %[[VAL_21:.*]] = vector.extractelement %[[VAL_20]]{{\[}}%[[VAL_19]] : i32] : vector<4xindex>
// CHECK: %[[VAL_22:.*]] = arith.constant 0 : i32
// CHECK: %[[VAL_23:.*]] = vector.transfer_read %[[VAL_3]]{{\[}}%[[VAL_21]], %[[VAL_2]]], %[[VAL_22]] {in_bounds = [true, true, true], permutation_map = #[[$ATTR_1]]} : tensor<15x1xi32>, vector<1x1x4xi32>
// CHECK: %[[VAL_24:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_25:.*]] = vector.transfer_write %[[VAL_23]], %[[VAL_0]]{{\[}}%[[VAL_24]], %[[VAL_24]], %[[VAL_24]]] : vector<1x1x4xi32>, tensor<1x1x4xi32>

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %0 vector_sizes [1, 1, 4]{ vectorize_nd_extract } : !transform.any_op
transform.yield
}
}
Loading