Skip to content

Update ppc test #4246

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 23, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 21 additions & 22 deletions pymc3/tests/test_sampling.py
Original file line number Diff line number Diff line change
Expand Up @@ -587,7 +587,7 @@ def test_model_shared_variable(self):

expected_p = np.array([logistic.eval({coeff: val}) for val in trace["x"][:samples]])
assert post_pred["obs"].shape == (samples, 3)
assert np.allclose(post_pred["p"], expected_p)
npt.assert_allclose(post_pred["p"], expected_p)

# fast version
samples = 100
Expand All @@ -598,11 +598,12 @@ def test_model_shared_variable(self):

expected_p = np.array([logistic.eval({coeff: val}) for val in trace["x"][:samples]])
assert post_pred["obs"].shape == (samples, 3)
assert np.allclose(post_pred["p"], expected_p)
npt.assert_allclose(post_pred["p"], expected_p)

def test_deterministic_of_observed(self):
meas_in_1 = pm.theanof.floatX(2 + 4 * np.random.randn(100))
meas_in_2 = pm.theanof.floatX(5 + 4 * np.random.randn(100))
meas_in_1 = pm.theanof.floatX(2 + 4 * np.random.randn(10))
meas_in_2 = pm.theanof.floatX(5 + 4 * np.random.randn(10))
nchains = 2
with pm.Model() as model:
mu_in_1 = pm.Normal("mu_in_1", 0, 1)
sigma_in_1 = pm.HalfNormal("sd_in_1", 1)
Expand All @@ -614,40 +615,38 @@ def test_deterministic_of_observed(self):
out_diff = in_1 + in_2
pm.Deterministic("out", out_diff)

trace = pm.sample(100)
ppc_trace = pm.trace_to_dataframe(
trace, varnames=[n for n in trace.varnames if n != "out"]
).to_dict("records")
trace = pm.sample(100, chains=nchains)
np.random.seed(0)
with pytest.warns(DeprecationWarning):
ppc = pm.sample_posterior_predictive(
model=model,
trace=ppc_trace,
samples=len(ppc_trace),
trace=trace,
samples=len(trace) * nchains,
vars=(model.deterministics + model.basic_RVs),
)

rtol = 1e-5 if theano.config.floatX == "float64" else 1e-3
assert np.allclose(ppc["in_1"] + ppc["in_2"], ppc["out"], rtol=rtol)
rtol = 1e-5 if theano.config.floatX == "float64" else 1e-4
npt.assert_allclose(ppc["in_1"] + ppc["in_2"], ppc["out"], rtol=rtol)

np.random.seed(0)
ppc = pm.sample_posterior_predictive(
model=model,
trace=ppc_trace,
samples=len(ppc_trace),
trace=trace,
samples=len(trace) * nchains,
var_names=[var.name for var in (model.deterministics + model.basic_RVs)],
)

rtol = 1e-5 if theano.config.floatX == "float64" else 1e-3
assert np.allclose(ppc["in_1"] + ppc["in_2"], ppc["out"], rtol=rtol)
npt.assert_allclose(ppc["in_1"] + ppc["in_2"], ppc["out"], rtol=rtol)

np.random.seed(0)
ppc = pm.fast_sample_posterior_predictive(
model=model,
trace=ppc_trace,
samples=len(ppc_trace),
trace=trace,
samples=len(trace) * nchains,
var_names=[var.name for var in (model.deterministics + model.basic_RVs)],
)

rtol = 1e-5 if theano.config.floatX == "float64" else 1e-3
assert np.allclose(ppc["in_1"] + ppc["in_2"], ppc["out"], rtol=rtol)
npt.assert_allclose(ppc["in_1"] + ppc["in_2"], ppc["out"], rtol=rtol)

def test_deterministic_of_observed_modified_interface(self):
meas_in_1 = pm.theanof.floatX(2 + 4 * np.random.randn(100))
Expand Down Expand Up @@ -675,7 +674,7 @@ def test_deterministic_of_observed_modified_interface(self):
)

rtol = 1e-5 if theano.config.floatX == "float64" else 1e-3
assert np.allclose(ppc["in_1"] + ppc["in_2"], ppc["out"], rtol=rtol)
npt.assert_allclose(ppc["in_1"] + ppc["in_2"], ppc["out"], rtol=rtol)

ppc = pm.fast_sample_posterior_predictive(
model=model,
Expand All @@ -685,7 +684,7 @@ def test_deterministic_of_observed_modified_interface(self):
)

rtol = 1e-5 if theano.config.floatX == "float64" else 1e-3
assert np.allclose(ppc["in_1"] + ppc["in_2"], ppc["out"], rtol=rtol)
npt.assert_allclose(ppc["in_1"] + ppc["in_2"], ppc["out"], rtol=rtol)

def test_variable_type(self):
with pm.Model() as model:
Expand Down